In this study, PMMA/ABS/CoCl ternary composite films were fabricated by the solution casting technique. The different weight ratios of cobalt chloride (≤10 wt) were incorporated into the PMMA/ABS blend (80:20). The chemical structure and thermal properties of the synthesized composites were assessed by FT-IR, TGA, and XRD. The biological properties of ternary composites, such as in vitro antibacterial activity and antioxidant capacity, were investigated. The enhanced thermal stability and promising antibacterial, selective antibiofilm, and potential antioxidant properties of PMMA/ABS/cobalt chloride composites demonstrated that they can be used for high-quality plastics and in many pharmaceutical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698274PMC
http://dx.doi.org/10.3390/molecules27227669DOI Listing

Publication Analysis

Top Keywords

pharmaceutical applications
8
pmma/abs/cocl composites
4
composites pharmaceutical
4
applications thermal
4
thermal antimicrobial
4
antimicrobial antibiofilm
4
antibiofilm antioxidant
4
antioxidant studies
4
studies study
4
study pmma/abs/cocl
4

Similar Publications

Data and AI-driven synthetic binding protein discovery.

Trends Pharmacol Sci

January 2025

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing 401329, China. Electronic address:

Synthetic binding proteins (SBPs) are a class of protein binders that are artificially created and do not exist naturally. Their broad applications in tackling challenges of research, diagnostics, and therapeutics have garnered significant interest. Traditional protein engineering is pivotal to the discovery of SBPs.

View Article and Find Full Text PDF

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

Serine-modified silver nanoparticle porous spray membrane: A novel approach to wound infection prevention and inflammation reduction.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:

Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.

View Article and Find Full Text PDF

The respiratory tract hosts a diverse microbial community whose composition varies with anatomical location and throughout life. Rothia mucilaginosa, a common commensal of the upper respiratory tract and oral cavity, has recently been recognized for its ability to inhibit bacteria-triggered pro-inflammatory responses. However, its role in modulating the immune response to viral infections such as influenza A virus (IAV) pneumonia, remains unknown.

View Article and Find Full Text PDF

Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!