Characterization of Ionic Transport in LiO-(Mn:Fe)O-PO Glasses for Li Batteries.

Materials (Basel)

Department of Nanoenergy Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Published: November 2022

We present a systematic study of the lithium-ion transport upon the mixed manganese-iron oxide phosphate glasses 3Li2O-xMn2O3-(2-x)Fe2O3-3P2O5(LMxF2−xPO; 0≤ x ≤2.0) proposed for the use in a cathode for lithium secondary batteries. The glasses have been fabricated using a solid reaction process. The electrical characteristics of the glass samples have been characterized by electrical impedance in the frequency range from 100 Hz to 30 MHz and temperature from 30 °C to 240 °C. Differential thermal analysis and X-ray diffraction were used to determine the thermal and structural properties. It has been observed that the dc conductivity decreases, but the activation energies of dc and ac and the glass-forming ability increase with the increasing Mn2O3 content in LMxF2−xPO glasses. The process of the ionic conduction and the relaxation in LMxF2−xPO glasses are determined by using power−law, Cole−Cole, and modulus methods. The Li+ ions migrate via the conduction pathway of the non-bridging oxygen formed by the depolymerization of the mixed iron−manganese−phosphate network structure. The mixed iron−manganese content in the LMxF2−xPO glasses constructs the sites with different depths of the potential well, leading to low ionic conductivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693034PMC
http://dx.doi.org/10.3390/ma15228176DOI Listing

Publication Analysis

Top Keywords

lmxf2−xpo glasses
12
content lmxf2−xpo
8
glasses
6
characterization ionic
4
ionic transport
4
transport lio-mnfeo-po
4
lio-mnfeo-po glasses
4
glasses batteries
4
batteries systematic
4
systematic study
4

Similar Publications

Rejuvenation and memory, long considered the distinguishing features of spin glasses, have recently been proven to result from the growth of multiple length scales. This insight, enabled by simulations on the Janus II supercomputer, has opened the door to a quantitative analysis. We combine numerical simulations with comparable experiments to introduce two coefficients that quantify memory.

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.

This is a maximal intensity projection of CA1 pyramidal cell transfected with plasmid with the reporter GFP using single cell electroporation technique. In this particular case the organotypic slices were prepared from p5-7 pups in a tissue chopper (McIlwain). And maintained in MEM bases media with added glutamax with a change in 2 alternative dyas at 37°C and 5% CO for 4 days in-vitro (DIV) before electroporating with a glass pipette of 7-10mΩ resistance by applying 4 square pulses of -ve voltage of -2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of California, San Diego, San Diego, CA, USA.

Background: Microglia are the major innate immune cells of the brain and play diverse roles in brain development and homeostasis. In the context of Alzheimer's disease, microglia acquire new phenotypes that can exert protective or pathogenic roles. Single cell and single nuclei RNA sequencing experiments have defined molecular signatures of different disease-associated microglia states associated with protective or pathogenic functions, but the mechanisms driving these transitions are not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!