The incorporation of waste materials generated in many industries has been actively advocated for in the construction industry, since they have the capacity to lessen the pollution on dumpsites, mitigate environmental resource consumption, and establish a sustainable environment. This research has been conducted to determine the influence of different rice husk ash (RHA) concentrations on the fresh and mechanical properties of high-strength concrete. RHA was employed to partially replace the cement at 5%, 10%, 15%, and 20% by weight. Fresh properties, such as slump, compacting factor, density, and surface absorption, were determined. In contrast, its mechanical properties, such as compressive strength, splitting tensile strength and flexural strength, were assessed after 7, 28, and 60 days. In addition, the microstructural evaluation, initial surface absorption test, = environmental impact, and cost-benefit analysis were evaluated. The results show that the incorporation of RHA reduces the workability of fresh mixes, while enhancing their compressive, splitting, and flexural strength up to 7.16%, 7.03%, and 3.82%, respectively. Moreover, incorporating 10% of RHA provides the highest compressive strength, splitting tensile, and flexural strength, with an improved initial surface absorption and microstructural evaluation and greater eco-strength efficiencies. Finally, a relatively lower CO-eq (equivalent to kg CO) per MPa for RHA concrete indicates the significant positive impact due to the reduced Global Warming Potential (GWP). Thus, the current findings demonstrated that RHA can be used in the concrete industry as a possible revenue source for developing sustainable concretes with high performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699146 | PMC |
http://dx.doi.org/10.3390/ma15228171 | DOI Listing |
Anal Methods
November 2017
Centre de Recherche sur la Conservation (CRC), MNHN, Sorbonne-Universités CNRS, MCC, USR 3224, CP21, 36 rue Geoffroy Saint Hilaire, 75005 Paris, France.
Reflectance spectral imaging is a powerful tool for the non-invasive study of cultural heritage objects. Particular visible to short wave infrared (400-2500 nm) spectral features are linked to compositional information. Spectral images can hence be used to generate useful chemical maps.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 1, 24118 Kiel, Germany.
A novel multi-molecular beam/infrared reflection absorption spectroscopy (IRAS) apparatus is described, which was constructed for studying mechanisms and kinetics of heterogeneously catalyzed reactions following a rigorous surface science approach in the pressure range from ultrahigh vacuum (UHV, 1 × 10-10 mbar) to near-ambient pressure (NAP, 1000 mbar) conditions. The apparatus comprises a preparation chamber equipped with standard surface science tools required for the preparation and characterization of model heterogeneous catalysts and two reaction chambers operating at different pressure ranges: in UHV and in the variable pressure range up to NAP conditions. The UHV reaction chamber contains two effusive molecular beams (flux up to 1.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFSci Rep
January 2025
Nonprofitable Organization Touche NPO, Sapporo, 060-004, Japan.
In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.
View Article and Find Full Text PDFNanoscale
January 2025
CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, Dhanbad - 828108, Jharkhand, India.
Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!