In this paper, we present the work of designing and fabricating a new generation of microelectromechanical systems (MEMS) based microfluidic preconcentrators (MFP) for volatile organic compounds (VOCs) quantification. The main objective of this work is to quantify the n-pentane impurities using MFP for sample preparation. The MFP was analyzed using Hewlett-Packard 5890 gas chromatography, having a flame ionization detector under isothermal conditions. The proposed MFP system includes two-microfluidic preconcentrators for continuous action and a system of four 3/2 solenoid valves with a control unit. Microfluidic preconcentrators were placed on metal plates and have circular channels filled with Al2O3 (50 μm), n-octane ResSil-C (80/100 mesh) sorbents of one nature and are hyphenated with the Peltier elements to regulate the temperature of sorption and desorption. The n-pentane quantitative determination was carried out using a calibration plot of gas mixtures on a successive dilution with the nitrogen. This study shows that the microfluidic preconcentrator system with Al2O3 and n-Octane ResSil-C sorbent concentrates the n-pentane traces up to 41 to 47 times from the gas mixture with the standard deviation of ≤5%. It has been observed that the n-octane ResSil-C based MFC shows very fast response (<5 min) and stability up to 300 cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696541 | PMC |
http://dx.doi.org/10.3390/ma15228090 | DOI Listing |
Materials (Basel)
November 2022
Center of Nanotechnology, King Abdulaziz University, Jeddha 22254, Saudi Arabia.
In this paper, we present the work of designing and fabricating a new generation of microelectromechanical systems (MEMS) based microfluidic preconcentrators (MFP) for volatile organic compounds (VOCs) quantification. The main objective of this work is to quantify the n-pentane impurities using MFP for sample preparation. The MFP was analyzed using Hewlett-Packard 5890 gas chromatography, having a flame ionization detector under isothermal conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!