A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accuracy of Seismic Response Evaluation of Two-Dimensional Analysis Model with Rigid Joints for RC Frame Buildings. | LitMetric

Three- or two-dimensional (2D) numerical models are used for the evaluation of the seismic performance of reinforced concrete (RC) buildings. This study examines a 2D numerical model for a specimen used in a full-scale four-story RC shaking-table test and evaluates the accuracy of the seismic response of the 2D numerical model, which is composed of a square fiber section model for the columns, a T-shape fiber section model for the beam and slab, and a rigid joint model for the beam-column joint. A parametric analysis of the effective slab width is performed to analyze its effects on the modal shape and natural period. The results suggest that the primary natural period of the considered model is almost identical to that associated with the experimental results. The applicability of the 2D numerical model for estimating the seismic response of the structure is established. By comparing the results of the seismic analysis and the experiment in the 50% amplitude of the JMA-Kobe wave, which corresponds to slightly exceeding VII on the modified Mercalli intensity scale, the root-mean-square percentage error of the 2D numerical model is 1.03% for the floor acceleration and 4.7% for the inter-story drift. Thus, the analytical model used in this study has sufficient accuracy in evaluating the seismic performance of buildings constructed in regions with a maximum seismic intensity of VII.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697071PMC
http://dx.doi.org/10.3390/ma15228027DOI Listing

Publication Analysis

Top Keywords

numerical model
16
seismic response
12
model
10
accuracy seismic
8
seismic performance
8
fiber model
8
natural period
8
seismic
6
numerical
5
response evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!