Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three- or two-dimensional (2D) numerical models are used for the evaluation of the seismic performance of reinforced concrete (RC) buildings. This study examines a 2D numerical model for a specimen used in a full-scale four-story RC shaking-table test and evaluates the accuracy of the seismic response of the 2D numerical model, which is composed of a square fiber section model for the columns, a T-shape fiber section model for the beam and slab, and a rigid joint model for the beam-column joint. A parametric analysis of the effective slab width is performed to analyze its effects on the modal shape and natural period. The results suggest that the primary natural period of the considered model is almost identical to that associated with the experimental results. The applicability of the 2D numerical model for estimating the seismic response of the structure is established. By comparing the results of the seismic analysis and the experiment in the 50% amplitude of the JMA-Kobe wave, which corresponds to slightly exceeding VII on the modified Mercalli intensity scale, the root-mean-square percentage error of the 2D numerical model is 1.03% for the floor acceleration and 4.7% for the inter-story drift. Thus, the analytical model used in this study has sufficient accuracy in evaluating the seismic performance of buildings constructed in regions with a maximum seismic intensity of VII.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697071 | PMC |
http://dx.doi.org/10.3390/ma15228027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!