The Effect of Initial Grain Size on the Nanocrystallization of AZ31 Mg Alloy during Rotary Swaging.

Materials (Basel)

Light Alloy Research Institute, Central South University, Changsha 410083, China.

Published: November 2022

Nanograins were obtained in the AZ31 Mg alloy bars with different initial grain sizes via cold rotary swaging. Microstructure evolution during deformation was investigated through electron backscatter diffraction analysis and transmission electron microscopy studies. The results indicate that initial grain size had little effect on the mechanism of grain refinement during swaging. The nanocrystallization process of the alloys with different initial grain sizes included extensive twinning followed by the further refinement of the twin lamellae through the formation of massive dislocation arrays. However, as the initial grain size decreased, the formation rate of nanograins increased, resulting in a higher degree of nanocrystallization after the same swaging pass. The mean grain size and yield strength of the sample with the smallest initial grain size were about 91 nm and 489 MPa, respectively. The slower rate and lower degree of nanocrystallization in the alloy with a larger initial grain size were mainly attributed to the less grain boundary areas and higher activity of twinning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696913PMC
http://dx.doi.org/10.3390/ma15227979DOI Listing

Publication Analysis

Top Keywords

initial grain
28
grain size
24
grain
9
az31 alloy
8
rotary swaging
8
grain sizes
8
degree nanocrystallization
8
initial
7
size
6
nanocrystallization
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Lightweight container technology has emerged as a fundamental component of cloud-native computing, with the deployment of containers and the balancing of loads on virtual machines representing significant challenges. This paper presents an optimization strategy for container deployment that consists of two stages: coarse-grained and fine-grained load balancing. In the initial stage, a greedy algorithm is employed for coarse-grained deployment, facilitating the distribution of container services across virtual machines in a balanced manner based on resource requests.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.

View Article and Find Full Text PDF

Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!