In order to reduce the sintering temperature and improve the mechanical properties of B4C ceramics, ZrB2 was formed in situ using the SPS sintering method with ZrO2 and B4C as raw materials. Thermodynamic calculations revealed that CO pressure affected the formation of ZrB2 at temperatures from 814 °C to 1100 °C. The experimental results showed that the ZrB2 grain size was <5 µm and that the grains were uniformly distributed within the B4C ceramics. With an increase in ZrO2 content, the Vickers hardness and flexural strength of the B4C ceramics first increased and then decreased, while the fracture toughness continuously increased. When the content of ZrO2 was 15 wt%, the Vickers hardness, fracture toughness and flexural strength of B4C ceramics were 35.5 ± 0.63 GPa, 3.6 ± 0.24 MPa·m1/2 and 403 ± 10 MPa, respectively. These results suggest that ZrB2 inhibits B4C grain growth, eliminates crack tip stress, and provides fine grain to strengthen and toughen B4C ceramics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693867PMC
http://dx.doi.org/10.3390/ma15227961DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
situ zrb
4
zrb formation
4
formation ceramics
4
ceramics strengthening
4
strengthening mechanism
4
mechanism mechanical
4
properties order
4
order reduce
4
reduce sintering
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!