Processing texture on contact surfaces can improve the friction performance of mechanical comments. In this research, micro-dimple textures with various parameter were processed on a steel ball's surface with a picosecond laser. Then, the EHL (elastohydrodynamic lubrication) oil film thickness was measured on an optical ball-on-disc tribometer subjected to pure sliding conditions. The effects of sliding velocity, load, dimple location and dimple depth on the film thickness were analyzed. The results showed that the dimple affected the pressure distribution in the contact area, which in turn changed the distribution of the local film thickness. An increase in the local film thickness occurred between the dimple and outlet of the contact region, while a decrease in the film thickness formed from the dimple to the entrance of the contact area and both sides of the dimple's edge. Velocity and applied loads affected the film thickness distribution as well. As the sliding velocity increased, the film thickness increasing region enlarged, while the film thickness-decreasing area shrank. The increase in load resulted in a negative effect on the increase in film thickness. This study will provide a reference for point-contact designs with low friction conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695531 | PMC |
http://dx.doi.org/10.3390/ma15227926 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.
Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.
View Article and Find Full Text PDFFood Chem X
January 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.
View Article and Find Full Text PDFOpt Express
January 2025
The perceived colors of silicon-on-insulator (SOI) wafers with etched Si surface layers of thickness 90 nm to 30 nm vary from turquoise to purple to golden. Measured reflectance curves spanning ultraviolet, visible, and near infrared wavelengths have an amplitude modulated oscillatory pattern. Multilayer reflectance calculations indicate the oscillatory pattern results from the 2 µm thick buried SiO layer which functions as a nearly lossless reflective Fabry-Perot etalon in the near infrared where SiO and Si are transparent.
View Article and Find Full Text PDFThe monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.
View Article and Find Full Text PDFThis paper demonstrates a customized quartz tuning fork (QTF) coated with the titanium carbide (TiCT) MXene film that can effectively enhance the sensitivity of light-induced thermoelastic spectroscopy (LITES). The MXene film is coated at the root of the customized QTF. The film area is proven to have little impact on resonance frequency, bandwidth, quality factor, and amplitude of the second harmonic signal (2) based on the fundamental flexural mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!