Agriculture in southern Algeria faces several challenges that hinder its development, including drought, high temperatures and the excessive salinity of soil and groundwater. The introduction of crops resistant to these factors is one of the solutions chosen to address these abiotic constraints. This research aimed to evaluate the behavior of quinoa Willd.) grown in the Ouargla region of southeastern Algeria. Five varieties of quinoa ( and were tested at two sites that differed in terms of soil salinity (9.95 mS/cm and 0.85 mS/cm) during 2019 and 2020. A complete random block experimental design with four repetitions was used for the agronomic tests. Our results clearly show that higher grain yields were obtained at the high salinity site (site 1) compared to the low salinity site (site 2). However, plant height, grain yield per plant and harvest index differed between varieties and sites. In contrast, stem diameter was not greatly affected by salinity. The varieties that seem to be best adapted to the growing conditions of the Ouargla region are, in descending order: and . When testing quinoa in new environments, it is critical to adapt the cropping cycle of varieties to avoid very high temperatures. The choice to switch to winter cultivation instead of spring cultivation can be an essential criterion for success. The biogeographical approach conducted in this research opens up new perspectives for the adaptation and cultivation of quinoa outside its region of origin to satisfy the food security of the people of North Africa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692953PMC
http://dx.doi.org/10.3390/life12111854DOI Listing

Publication Analysis

Top Keywords

willd grown
8
high temperatures
8
ouargla region
8
salinity site
8
site site
8
salinity
5
adaptation quinoa
4
quinoa genotypes
4
genotypes willd
4
grown saharan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!