Reliable preclinical models are needed for screening new cancer drugs. Thus, we developed an improved 3D tumor organoid model termed "organoid raft cultures" (ORCs). Development of ORCs involved culturing tumors ex vivo on collagen beds (boats) with grid supports to maintain their morphological structure. The ORCs were developed from patient-derived xenografts (PDXs) of colon cancers excised from immune-deficient mice (NOD/SCID/IL2Rgamma). We utilized these new models to evaluate the efficacy of an investigational drug, Navitoclax (ABT-263). We tested the efficacy of ABT-263, an inhibitor of BCL-2 family proteins, in these ORCs derived from a PDX that showed high expression of antiapoptotic BCL2 family proteins (BCL-2, BCL-X, and BCL-W). Hematoxylin and eosin staining evaluation of PDXs and corresponding ORCs indicated the retention of morphological and other histological integrity of ORCs. ORCs treated with ABT-263 showed decreased expression of antiapoptotic proteins (BCL2, BCL-X and BCL-W) and increased proapoptotic proteins (BAX and PUMA), with concomitant activation of caspase 3. These studies support the usefulness of the ORCs, developed from PDXs, as an alternative to PDXs and as faster screening models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698332 | PMC |
http://dx.doi.org/10.3390/ijms232214392 | DOI Listing |
Acta Neuropathol Commun
January 2025
Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches.
View Article and Find Full Text PDFDev Cell
January 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
Cancers (Basel)
December 2024
Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!