Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy.

Int J Mol Sci

Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary.

Published: November 2022

Lipid rafts are specialized microdomains in cell membranes, rich in cholesterol and sphingolipids, and play an integrative role in several physiological and pathophysiological processes. The integrity of rafts can be disrupted via their cholesterol content-with methyl-β-cyclodextrin (MCD) or with our own carboxamido-steroid compound (C1)-or via their sphingolipid content-with sphingomyelinase (SMase) or with myriocin (Myr). We previously proved by the fluorescent spectroscopy method with LAURDAN that treatment with lipid raft disruptors led to a change in cell membrane polarity. In this study, we focused on the alteration of parameters describing membrane fluidity, such as generalized polarization (), characteristic time of the GP values change-Center of Gravity ()-and rotational mobility () of LAURDAN molecules. Myr caused a blue shift of the LAURDAN spectrum (higher GP value), while other agents lowered GP values (red shift). MCD decreased the CoG values, while other compounds increased it, so MCD lowered membrane stiffness. In the case of only Myr lowered the rotation of LAURDAN, while the other compounds increased the speed of , which indicated a more disordered membrane structure. Overall, MCD appeared to increase the fluidity of the membranes, while treatment with the other compounds resulted in decreased fluidity and increased stiffness of the membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697551PMC
http://dx.doi.org/10.3390/ijms232213729DOI Listing

Publication Analysis

Top Keywords

lipid raft
8
raft disruptors
8
cell membrane
8
membrane fluidity
8
compounds increased
8
membrane
5
disruptors cell
4
fluidity
4
fluidity studied
4
studied fluorescence
4

Similar Publications

Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.

View Article and Find Full Text PDF

Role of DHA in a Physicochemical Study of a Model Membrane of Grey Matter.

Membranes (Basel)

December 2024

Laboratory of Physical-Chemistry, Department of Chemistry, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina.

The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system's compressibility decreases, and the membrane's elasticity increases, as evidenced by the reduction in the bulk modulus.

View Article and Find Full Text PDF

In order to enrich the selection of biological ligands, realize the miniaturization analysis, and broaden the application of monolith materials for active ingredients screening and separating, we sough to construct a lipid raft @capillary monolith microcolumn affinity chromatography model. Single factor experiments and various characterization methods, including scanning electron microscopy (SEM) and thermogravimetric analysis, were employed to investigate the polymerization of the monolith column under different material ratios to determine optimal preparation conditions. Subsequently, the lipid raft from U251 cells was integrated with the monolith materials based on epoxy-based covalent crosslinking principle and characterized through SEM and immunofluorescence methods.

View Article and Find Full Text PDF

[Absorption mechanism of iron oxide nanoparticles in Caco-2 cell model].

Wei Sheng Yan Jiu

November 2024

West China School of Public Health, Sichuan University, Chengdu 610041, China.

Objective: To explore the possible mechanism of absorption of iron oxide nanoparticles into the human body through the gastrointestinal tract.

Methods: This article used Caco-2 monolayer cells as a cell model, prepared characterized iron oxide nanoparticles(Fe_2O_3 NPs) as suspensions, and intervened in Caco-2 cells. CCK-8 method, transwell method, and atomic spectrophotometer method were used to explore the effect of Fe_2O_3 NPs on the activity of Caco-2 cells and the absorption and transport of them through the Caco-2 monolayer cell model.

View Article and Find Full Text PDF

Lipid rafts are liquid-ordered domains in which specific enzymes and receptors are located. These membrane platforms play crucial roles in a variety of signaling pathways. Alterations in the lipid environment, such as those elicited by oxidative stress, can lead to important functional disruptions in membrane proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!