In workplaces such as steel, power grids, and construction, firefighters and other workers often encounter non-uniform high-temperature environments, which significantly increase the risk of local heat stress and local heat discomfort for the workers. In this paper, a multi-segment human bioheat model is developed to predict the human thermal response in asymmetric high-temperature environments by considering the sensitivity of the modeling to angular changes in skin temperature and the effects of high temperatures on human thermoregulatory and physiological responses simultaneously. The extended model for asymmetric high-temperature environments is validated with the current model results and experimental data. The result shows that the extended model predicts the human skin temperature more accurately. Under non-uniform high-temperature conditions, the local skin temperature predictions are highly consistent with the experimental data, with a maximum difference of 2 °C. In summary, the proposed model can accurately predict the temperature of the human core and skin layers. It has the potential to estimate human physiological and thermoregulatory responses under uniform and non-uniform high-temperature environments, providing technical support for local heat stress and local thermal discomfort protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690479 | PMC |
http://dx.doi.org/10.3390/ijerph192215259 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch of Russian Academy of Sciences, 3 Koptuga Av, Novosibirsk, Russia, 630090.
Mosses and lichens are often used to assess atmospheric deposition of Pb. The most widely used method for determining this isotope is gamma spectrometric analysis. There is often a need to enhance the sensitivity of the method, which can be achieved by pre-concentrating Pb.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Meteorology and Fluid Science Division, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi 270-1194, Chiba, Japan.
The electrical resistance (ER) method is widely used for atmospheric corrosion measurements and can be used to measure the corrosion rate accurately. However, severe errors occur in environments with temperature fluctuations, such as areas exposed to solar radiation, preventing accurate temporal corrosion rate measurement. To decrease the error, we developed an improved sensor composed of a reference metal film and an overlaid sensor metal film to cancel temperature differences between them.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!