Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Our lab investigates the anti-HIV-1 activity in () leaf extract. Traditional Senegalese healers have used leaf extract as a part of a plant-based treatment for HIV/AIDS infections. Our overall goal is to define and validate the scientific basis for using leaf extract as a part of the traditional Senegalese treatment. As an initial characterization of this extract, we used activity-guided fractionation to determine the active ingredient's solubility and relative size. We found that leaf extract inhibits HIV-1 infection by >50% at concentrations of 0.02 mg/mL and above and is not toxic over its inhibitory range (0-0.5 mg/mL). We observed significantly more antiviral activity in direct water and acetonitrile extractions ( ≤ 0.05). We also observed significantly more antiviral activity in the aqueous phases of ethyl acetate, chloroform, and diethyl ether extractions ( ≤ 0.05). Though most of the antiviral activity partitioned into the aqueous layers, some antiviral activity was present in the organic layers. We show that the active agent in the plant extracts is at least 30 kD in size. Significantly more antiviral activity was retained in 3, 10, and 30 kD molecular weight cutoff filters ( ≤ 0.05). In contrast, most of the antiviral activity passed through the 100 kD filter ( ≤ 0.05). Because the active anti-HIV-1 agent presented as a large, amphiphilic molecule we ran the purified extract on an SDS-page gel. We show that the anti-HIV-1 activity in the leaf extracts is attributed to a 30 kDa protein we call MoMo30. This article describes how MoMo30 was determined to be responsible for its anti-HIV-1 activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690441 | PMC |
http://dx.doi.org/10.3390/ijerph192215227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!