Citrus fruits are one of the main crops worldwide. Its industrialization, primarily juice production, produces large amounts of byproducts, composed of seeds and peels, that can be used to obtain new ingredients. In this study, sorption behaviour, glass transition, mechanical properties, colour and bioactives of four different soluble fibre-enriched powders obtained from orange pomace using green technologies were studied. Powders were equilibrated at water activities between 0.113 and 0.680 for fifteen weeks at 20 °C, and studies were performed to indicate the best storing conditions to ensure the glassy state of the amorphous matrix and higher bioactive stability. By combining the Gordon and Taylor model with the Henderson isotherm, the critical water activity and content for storage in a glassy state were determined. The ingredient obtained after extrusion + hot water is the most stable, which is also the one with the highest dietary fibre content. Powder obtained by jet cooking is the least stable, as it is not in a glassy state at any water activity at room temperature. To increase storage stability, these should be stored at refrigeration temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689554PMC
http://dx.doi.org/10.3390/foods11223615DOI Listing

Publication Analysis

Top Keywords

glassy state
12
glass transition
8
orange pomace
8
water activity
8
sorption isotherms
4
isotherms glass
4
transition bioactive
4
bioactive compounds
4
compounds ingredients
4
ingredients enriched
4

Similar Publications

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics.

Molecules

January 2025

Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs Legii 565, 532 10 Pardubice, Czech Republic.

The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol for the temperature shift, but with a significantly higher value of ~500 kJ·mol being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame.

View Article and Find Full Text PDF

The paper starts by describing the manufacturing process of cups thermoformed from extruded foils of 80% recycled PET (80r-PET), which comprises heating, hot deep drawing and cooling. The 80r-PET foils were heated up to 120 °C, at heating rates of the order of hundreds °C/min, and deep drawn with multiple punchers, having a depth-to-width ratio exceeding 1:1. After puncher-assisted deformation, the cups were air blown away from the punchers, thus being "frozen" in the deformed state.

View Article and Find Full Text PDF

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

Spray drying of reconstituted skim milk fermented with GG: control of glass transition and stickiness.

Food Sci Biotechnol

January 2025

Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea.

Article Synopsis
  • - The study examined how glass transition and stickiness impacted the spray drying of fermented reconstituted skim milk (RSM), finding that the process resulted in issues with wall deposits without the addition of skim milk powder (SMP).
  • - When SMP was added, the drying process improved significantly, with heightened temperatures for the glass transition and sticky point, helping the droplets transform from a sticky state to a non-sticky glassy state during drying.
  • - Despite the spray-dried powder having higher moisture sorption and lactose crystallization, the relationship between glass transition effects suggests that its shelf stability at room temperature could be comparable to that of the control group.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!