Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soybean protein isolate (SPI), as a full-valued protein, is rich in nutrients, such as amino acids. However, the isolated structure of soybeans makes it difficult to react and thus prepare good gels. In order to further improve the properties of SPIs and to prepare plant-based gels with good performance, this experiment was conducted to prepare maltodextrin glycosylated soybean isolate (MGSI) by the glycosylation of SPI and maltodextrin (MD), and the gels were prepared by thermal induction, transglutaminase (TGase) induction, and TG-MgCl co-induction of this glycosylated protein to investigate the effects of different induction methods on the structure and properties of the gels produced by MGSIs. Moreover, the effects of different induction methods on the structure and properties of the gels produced by MGSI were investigated. SDS-PAGE protein electrophoresis, FTIR spectroscopy, and endogenous fluorescence spectroscopy revealed that all three inductions result in the covalent bond cross-linking of MGSI during the gel formation process. Compared with thermal induction, the TGase-induced MGSI secondary structure had a higher content of β-folded structures, increased fluorescence intensity of tertiary structures, and produced a red shift. The gel induced by TGase in collaboration with MgCl contains a more β-folded structure and irregular curl and increases the β-turned angle and α-helix content further, the endogenous fluorescence λmax is significantly red-shifted, and the fluorescence intensity increases, demonstrating that the tertiary structure of MGSI unfolds the most, forming multilayered gels with the tightest structures. The three gels were analyzed by rheology and SEM, showing that the TGase-MgCl synergistically induced gel had the highest energy-storage modulus G', viscoelasticity, and water-holding capacity, as well as the densest gel structure. In conclusion, the combined treatment of enzyme and MgCl might be an effective way of improving the structure and gel properties of SPI. This study helps to promote the high-value utilization of SPI and the development of plant protein gels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688949 | PMC |
http://dx.doi.org/10.3390/foods11223595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!