Immunogenic cell death (ICD) has emerged as a potential mechanism mediating adaptive immune response and tumor immunity in anti-cancer treatment. However, the signature of ICD in high-grade gliomas (HGGs) remains largely unknown, and its relevance to immunotherapies is still undetermined. The purpose of this study is to identify ICD-associated genotypes in order to explore their relevance to tumor immunity, patient prognosis and therapeutic efficacy of immune checkpoint blockade (ICB) therapy in HGGs. Bulk RNA-seq data and clinical information on 169 and 297 patients were obtained from the Cancer Genome Atlas (TCGA) and China Glioma Genome Atlas (CGGA), respectively. The functional enrichment and characterization of ICD genotyping were detected, and the ICD prognostic signature prediction model was constructed using least absolute shrinkage and selection operator (LASSO) regression. The responsiveness to immunotherapy was predicted according to the scoring of the ICD prognostic signature. The HGG patients with high ICD gene signature (C1) showed poor outcomes, increased activity of immune modulation and immune escape, high levels of immune-checkpoint markers, and HLA-related genes, which may explain their reduced response to ICB immunotherapy. A gene set of the ICD signature, composing , , and , showed an independent prognostic value in both the TCGA and the CGGA HGG cohort. Our in silico analyses identified the ICD gene signature in HGGs with potential implications for predicting the responsiveness to ICB immune therapy and patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688114 | PMC |
http://dx.doi.org/10.3390/cells11223655 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFSci Rep
January 2025
Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China. Electronic address:
Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!