Dopamine has emerged as an important regulator of immunity. Recent evidence has shown that signalling through low-affinity dopamine receptors exerts anti-inflammatory effects, whilst stimulation of high-affinity dopamine receptors potentiates immunity in different models. However, the dopaminergic regulation of CD8 T-cells in anti-tumour immunity remains poorly explored. Here, we studied the role of dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in the function of CD8 T-cells and its consequences in the anti-tumour immune response. We observed that the deficiency of (the gene encoding DRD3) in CD8 T-cells limits their in vivo expansion, leading to an impaired anti-tumour response in a mouse melanoma model. Mechanistic analyses suggest that DRD3 stimulation favours the production of interleukin 2 (IL-2) and the surface expression of CD25, the α-chain IL-2 receptor, which are required for expansion and effector differentiation of CD8 T-cells. Thus, our results provide genetic and pharmacologic evidence indicating that DRD3 favours the production of IL-2 by CD8 T-cells, which is associated with higher expansion and acquisition of effector function of these cells, promoting a more potent anti-tumour response in a melanoma mouse model. These findings contribute to understanding how dopaminergic signalling affects the cellular immune response and represent an opportunity to improve melanoma therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688276 | PMC |
http://dx.doi.org/10.3390/cells11223536 | DOI Listing |
J Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
Background: Siglec-E is an immune checkpoint inhibitory molecule. Expression of Siglec-E on the immune cells has been shown to promote tumor regression. This study aimed to develop an adenovirus (Ad) vaccine targeting Siglec-E and carbonic anhydrase IX (CAIX) (Ad-Siglec-E/CAIX) and to evaluate its potential antitumor effects in several preclinical renal cancer models.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China. Electronic address:
Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium.
View Article and Find Full Text PDFJ Adv Res
January 2025
Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China. Electronic address:
Introduction: Parkin-mediated mitophagy is essential for the clearance of damaged mitochondria, and it inhibits tumour development. The role of mitophagy in modulating tumour immunity is becoming clearer, but the underlying mechanism is still poorly understood.
Objective: This study was designed to examine the role for Parkin in the immune microenvironment of liver tumors induced by carbon tetrachloride (CCl).
Int Immunopharmacol
January 2025
Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China. Electronic address:
Background: Lung squamous cell carcinoma (LUSC) is a significant health concern, characterized by a lack of specific therapies and limited treatment options for patients in advanced stages. This study aims to identify key molecules of prognostic importance in LUSC and provide an experimental foundation for their potential therapeutic applications.
Methods: Immune-related transcriptome expression analysis was performed on LUSC samples using the NanoString digital gene analysis system to develop a prognostic transcriptomic signature.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!