A Comparative Study of Deep Neural Networks for Real-Time Semantic Segmentation during the Transurethral Resection of Bladder Tumors.

Diagnostics (Basel)

Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

Published: November 2022

Bladder cancer is a common and often fatal disease. Papillary bladder tumors are well detectable using cystoscopic imaging, but small or flat lesions are frequently overlooked by urologists. However, detection accuracy can be improved if the images from the cystoscope are segmented in real time by a deep neural network (DNN). In this paper, we compare eight state-of-the-art DNNs for the semantic segmentation of white-light cystoscopy images: U-Net, UNet++, MA-Net, LinkNet, FPN, PAN, DeepLabv3, and DeepLabv3+. The evaluation includes per-image classification accuracy, per-pixel localization accuracy, prediction speed, and model size. Results show that the best F-score for bladder cancer (91%), the best segmentation map precision (92.91%), and the lowest size (7.93 MB) are also achieved by the PAN model, while the highest speed (6.73 ms) is obtained by DeepLabv3+. These results indicate better tumor localization accuracy than reported in previous studies. It can be concluded that deep neural networks may be extremely useful in the real-time diagnosis and therapy of bladder cancer, and among the eight investigated models, PAN shows the most promising results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689102PMC
http://dx.doi.org/10.3390/diagnostics12112849DOI Listing

Publication Analysis

Top Keywords

deep neural
12
bladder cancer
12
neural networks
8
semantic segmentation
8
bladder tumors
8
localization accuracy
8
bladder
5
comparative study
4
study deep
4
networks real-time
4

Similar Publications

In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.

View Article and Find Full Text PDF

Robust multi-read reconstruction from noisy clusters using deep neural network for DNA storage.

Comput Struct Biotechnol J

December 2024

Systems Biology Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

DNA holds immense potential as an emerging data storage medium. However, the recovery of information in DNA storage systems faces challenges posed by various errors, including IDS errors, strand breaks, and rearrangements, inevitably introduced during synthesis, amplification, sequencing, and storage processes. Sequence reconstruction, crucial for decoding, involves inferring the DNA reference from a cluster of erroneous copies.

View Article and Find Full Text PDF

Objective: Immunotherapy has become an option for the first-line therapy of advanced gastric cancer (GC), with improved survival. Our study aimed to investigate unresectable GC from an imaging perspective combined with clinicopathological variables to identify patients who were most likely to benefit from immunotherapy.

Method: Patients with unresectable GC who were consecutively treated with immunotherapy at two different medical centers of Chinese PLA General Hospital were included and divided into the training and validation cohorts, respectively.

View Article and Find Full Text PDF

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Research on bearing fault diagnosis based on a multimodal method.

Math Biosci Eng

December 2024

School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.

As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!