A well-established lung-cancer-survival-prediction model that relies on multiple data types, multiple novel machine-learning algorithms, and external testing is absent in the literature. This study aims to address this gap and determine the critical factors of lung cancer survival. We selected non-small-cell lung cancer patients from a retrospective dataset of the Taipei Medical University Clinical Research Database and Taiwan Cancer Registry between January 2008 and December 2018. All patients were monitored from the index date of cancer diagnosis until the event of death. Variables, including demographics, comorbidities, medications, laboratories, and patient gene tests, were used. Nine machine-learning algorithms with various modes were used. The performance of the algorithms was measured by the area under the receiver operating characteristic curve (AUC). In total, 3714 patients were included. The best performance of the artificial neural network (ANN) model was achieved when integrating all variables with the AUC, accuracy, precision, recall, and F1-score of 0.89, 0.82, 0.91, 0.75, and 0.65, respectively. The most important features were cancer stage, cancer size, age of diagnosis, smoking, drinking status, EGFR gene, and body mass index. Overall, the ANN model improved predictive performance when integrating different data types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688689PMC
http://dx.doi.org/10.3390/cancers14225562DOI Listing

Publication Analysis

Top Keywords

data types
12
lung cancer
12
multiple data
8
cancer survival
8
machine-learning algorithms
8
ann model
8
cancer
7
development validation
4
validation novel
4
novel deep-learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!