AI Article Synopsis

  • Six PARP inhibitors are primarily used in cancer therapy through continuous dosing to effectively suppress PARP activity.
  • Rucaparib exhibited the longest-lasting inhibition of PARP activity among the tested inhibitors, maintaining over 75% suppression for up to 72 hours post-treatment.
  • The study also explored the role of ATR inhibitors in combination with PARPi, revealing that rucaparib significantly enhanced the effectiveness of the ATR inhibitor VE-821, suggesting potential optimizations for treatment schedules.

Article Abstract

Six PARP inhibitors (PARPi) are approved for cancer therapy as monotherapy agents in daily or twice-daily continuous dosing schedules to maintain the necessary continuous suppression of PARP activity. Continuous PARP inhibition is required for single-agent anticancer activity. To investigate if such intense schedules are necessary, we determined the durability of PARP inhibition up to 72 h after a 1 h pulse of 1 µM of five of the approved PARPi, rucaparib, olaparib, niraparib, talazoparib and pamiparib, in IGROV-1 and ES-2 (human ovarian cancer) cells. Rucaparib caused the most persistent inhibition of PARP activity when maintained at ≥75% at 72 h after drug withdrawal in both IGROV-1 and ES-2 cells, but inhibition was more rapidly lost with the other PARPi. PARPi are also under clinical investigation with ATR inhibitors, and thus, we evaluated the implications for scheduling with an ATR inhibitor (VE-821). Rucaparib enhanced VE-821 cytotoxicity in co-exposure, sequential and delayed (24 h drug-free) schedules in IGROV-1 and ES-2 cells. Olaparib and niraparib enhanced VE-821 cytotoxicity only in co-exposed cells and not in sequential exposures. These data have clinical implications for the scheduling of PARPi as a monotherapy and in combination with ATR inhibitors and other cytotoxic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688250PMC
http://dx.doi.org/10.3390/cancers14225559DOI Listing

Publication Analysis

Top Keywords

parp inhibition
12
igrov-1 es-2
12
durability parp
8
parp inhibitors
8
parp activity
8
olaparib niraparib
8
es-2 cells
8
atr inhibitors
8
implications scheduling
8
enhanced ve-821
8

Similar Publications

Purpose: More active high-dose chemotherapy (HDC) regimens are needed for autologous stem-cell transplantation (ASCT) for refractory lymphomas. Seeking HDC enhancement with a poly(ADP-ribose) polymerase (PARP) inhibitor, we observed marked synergy between olaparib and vorinostat/gemcitabine/busulfan/melphalan (GemBuMel) against lymphoma cell lines, mediated by inhibition of DNA damage repair. Our preclinical work led us to clinically study olaparib/vorinostat/GemBuMel with ASCT.

View Article and Find Full Text PDF

Defects in DNA single-strand break repair are associated with neurodevelopmental and neurodegenerative disorders. One such disorder is that resulting from mutations in , a scaffold protein that plays a central role in DNA single-strand base repair. XRCC1 is recruited at sites of single-strand breaks by PARP1, a protein that detects and is activated by such breaks and is negatively regulated by XRCC1 to prevent excessive PARP binding and activity.

View Article and Find Full Text PDF

Drug repurposing has potential to improve outcomes for high-grade serous ovarian cancer (HGSOC). Repurposing drugs with PARP family binding activity may produce cytotoxic effects through the multiple mechanisms of PARP including DNA repair, cell-cycle regulation, and apoptosis. The aim of this study was to determine existing drugs that have PARP family binding activity and can be repurposed for treatment of HGSOC.

View Article and Find Full Text PDF

Antibody-drug conjugates targeting SSEA-4 inhibits growth and migration of SSEA-4 positive breast cancer cells.

Cancer Lett

January 2025

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.

Although breast cancer treatment has evolved significantly in recent years, drug resistance remains a major challenge. To identify new targets for breast cancer, we found that stage-specific embryonic antigen 4 (SSEA-4) is expressed in all subtypes of breast cancer cell lines, and the increased expression of the associated enzymes β3GalT5 and ST3Gal2 correlates with poor recurrence-free survival (RFS) in breast cancer. We also found that SSEA-4 antibodies can be rapidly internalized into breast cancer cells, a property that makes SSEA-4 an attractive target for antibody-drug conjugates (ADCs).

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.

Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!