Understanding the interaction between the microbial composition in the habitat and the gut of wildlife will contribute to conservation efforts since changes in the gut microbiome have been proven to influence the healthy and nutritional status of the host. This study analyzed the relationship between soil microbes and the microbial diversity and structure of the distal gut of the terrestrial golden snub-nosed monkey and Eurasian otter in the Foping National Nature Reserve (FNNR). A total of 15 otter fecal samples and 18 monkey fecal samples were collected from which 5 and 6 samples, respectively, were randomly selected for microbiome analysis. The remaining samples were used for fecal short-chain fatty acids (SCFAs) analysis. Soil samples from the otter and monkey habitats at each sampling point (eight in total) were also collected for microbiome analysis. The microbial phyla with the greatest relative abundance in soil or animal samples were Proteobacteria (41.2, 32.7, and 73.3% for soil, otters, and monkeys, respectively), Firmicutes (0.4% soil, 30.1% otters, and 14.4% monkeys), Bacteroidota (5.6% soil, 17.0% otters, and 8.3% monkeys), and Acidobacteriota (24.6% soil, 1.7% otters, and 0.1% monkeys). The estimation of alpha diversity indices revealed that the feature, Chao1, and Shannon indices of the soil microbiome were the greatest (p < 0.01) among the three groups, followed by those of the otter microbiome and those of the monkey microbiome (p < 0.01). Beta diversity analyses confirmed differences in the microbiota of the three types of samples. The determination of SCFA concentration in feces revealed that total volatile fatty acids, acetic acid, and isovaleric acid were greater (p < 0.05) in otters than in monkeys, while propionic acid followed the opposite pattern (p < 0.05). Correlation analysis of the microbiome and SCFA contents showed that propionic acid was positively correlated with significantly different bacterial groups, while acetic and butyric acid and total volatile acids were negatively correlated. This study confirmed that the fecal microbes of Eurasian otters and golden snub-nosed monkeys in the reserve are related to the soil microbial communities of their habitats, but they have different bacterial community structures and compositions, and there are different SCFA metabolic patterns in the gut of the two animals. The present study will help to improve wildlife protection in the FNNR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686598PMC
http://dx.doi.org/10.3390/ani12223097DOI Listing

Publication Analysis

Top Keywords

soil
9
eurasian otter
8
snub-nosed monkey
8
foping national
8
national nature
8
nature reserve
8
golden snub-nosed
8
fecal samples
8
microbiome analysis
8
fatty acids
8

Similar Publications

Background: Study the leaf functional traits is highly important for understanding the survival strategies and climate adaptability of old trees. In this study, the old (over 100 years old) and mature trees (about 50 years old) of Pinus tabulaeformis in the Loess Plateau were studied, and the variation of 18 leaf functional traits (6 economic, 4 anatomical, 2 photosynthetic and 6 physiological traits) was analyzed to understand the differences of survival strategies between old and mature trees. Combined with transcriptome and simple sequence repeats (SSR) techniques, the effects of soil property factors and genetic factors on leaf functional traits and the potential molecular mechanisms of traits differences were studied.

View Article and Find Full Text PDF

The Qinghai-Tibetan Plateau (QTP), one of the most important ecological regions in the world, is experiencing a decline in ecological function as a result of severe grassland degradation. Elymus nutans is one of the ecological grass species for restoring degraded grasslands in QTP. The seed yield and seed quality are often limited by soil nutrients in QTP, so it is very important to optimize the application rates of fertilizer for E.

View Article and Find Full Text PDF

Establishing and maintaining colonies of imported fire ants (IFA) (Hymenoptera: Formicidae) in the laboratory are crucial for research. Dehydration is one of the major mortality factors in IFA, and the ants tend to relocate from dry to moist places. In our laboratory, we developed a moisture differential technique to extract fire ant colonies from mound materials.

View Article and Find Full Text PDF

Fire-driven disruptions of global soil biochemical relationships.

Nat Commun

January 2025

Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain.

Fires alter the stability of organic matter and promote soil erosion which threatens the fundamental coupling of soil biogeochemical cycles. Yet, how soil biogeochemistry and its environmental drivers respond to fire remain virtually unknown globally. Here, we integrate experimental observations and random forest model, and reveal significant divergence in the responses of soil biogeochemical attributes to fire, including soil carbon (C), nitrogen (N), and phosphorus (P) contents worldwide.

View Article and Find Full Text PDF

Environmental impact analysis of crop residue burning in Madhya Pradesh: A multivariate comparison across key crops.

Environ Monit Assess

January 2025

Department of Agricultural Economics, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India.

This study quantified the environmental impacts of residue burning of major produced and burned crops in Madhya Pradesh, central India. The environmental impacts were quantified using Life Cycle Assessment (LCA) coupled with Monte Carlo simulation of 1000 iterations. Crop wise marginal impacts of the crops have been quantified using Multivariate regression model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!