Grapefruit peel essential oil (CpEO) was loaded on chitosan (Cs) nano-biopolymer by ionic gelation method and its effect on physicochemical properties of cherry tomatoes was evaluated during 18 days of storage at 10 °C. The highest loading capacity and encapsulation efficiency were obtained from the weight ratio of 1:0.25 Cs to oil. TEM, DLS and FTIR were used to characterize the nanoparticles. The release of the oil from the nanoparticles followed the Fickian diffusion model. CpEO-CsNPs-CO and CpEO-CsNPs-RE treatments reduced ethylene production and respiration rate and indicated a significant and promising effect on increasing the level of antioxidant enzymes (CAT and POD), slowing down the loss of ascorbic acid and total phenolic content and consequently, maintaining antioxidant capacity. These treatments prevented a rapid decline in TSS and TA and an increase in lycopene and MDA level, and maintained the firmness, weight, and color of the fruits throughout storage period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.182 | DOI Listing |
Int J Biol Macromol
January 2023
Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
Grapefruit peel essential oil (CpEO) was loaded on chitosan (Cs) nano-biopolymer by ionic gelation method and its effect on physicochemical properties of cherry tomatoes was evaluated during 18 days of storage at 10 °C. The highest loading capacity and encapsulation efficiency were obtained from the weight ratio of 1:0.25 Cs to oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!