Problems such as cathode collapse caused by volume change and shuttle effect of lithium polysulfides (LiPSs) limit the commercialization of Lithium-Sulfur (Li-S). Herein, we developed a sulfhydryl-containing multifunctional binder prepared by the nucleophilic ring-opening reaction of thiocyclic carbonates with amino groups. The binders (CNP-T and CNP-F) form sulfur-containing polymers with sulfur through the wet-slurry process, thereby effectively suppressing the shuttle effect. The abundant polar functional groups (e.g., -NH, -CS(NH)-) in CNP-T and CNP-F can effectively adsorb LiPSs to weaken the shuttle effect, which is confirmed by both density functional theory (DFT) and experimental results. At the same time, their own hyperbranched network structure can also limit the volume change of the sulfur cathode. Therefore, the Li-S battery exhibits an initial specific capacity of 924.02 mAh/g and a decay rate of 0.033% when cycled at 1C for 500 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.11.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!