Objective: To investigate the changes of Spike protein-HLA binding affinity profiles between the Wuhan strain and two dominant variants, the Delta and the Omicron strains, among the Taiwanese, the British and the Russian populations.
Methods: The HLA frequencies and the HLA-peptide binding affinity profiles in the T-CoV database were combined to conduct the study. We focused on the public alleles in the three populations (HLA-A, HLA-B, HLA-C, HLA-DRB1, and/or HLA-DPA1/DPB1 alleles) and the altered peptides of the spike protein (compared to the Wuhan strain) in the Delta G/478K·V1 (B.1.617.2 + AY.1 + AY.2) and the Omicron (BA.1) strains.
Results: For the Delta strain, tight bindings of the altered peptides to the HLA alleles decrease in all three populations and almost vanish in the Taiwanese population. For the Omicron strain, tight bindings are mostly preserved for both HLA classes and in the Taiwanese and the British populations, with a slight reduction in HLA class II in the Taiwanese (1.4%), while the Russian population preserves a relatively high fraction of tight bindings for both HLA classes.
Conclusion: We comprehensively reported the changes in the HLA-associated SARS-CoV-2 Spike protein peptide binding profiles among the Taiwanese, the British, and the Russian populations. Further studies are needed to understand the immunological mechanisms and the clinical value of our findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650568 | PMC |
http://dx.doi.org/10.1016/j.jaut.2022.102952 | DOI Listing |
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFFront Microbiol
December 2024
School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China.
Introduction: Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are prevalent in over 80 countries or territories worldwide, causing hundreds of thousands of cases annually. But currently there is a lack of specific antiviral agents and effective vaccines.
Methods: In the present study, to identify human neutralizing monoclonal antibody (mAb) against JEV or/and ZIKV, we isolated ZIKV-E protein-binding B cells from the peripheral venous blood of a healthy volunteer who had received the JEV live-attenuated vaccine and performed 10× Genomics transcriptome sequencing and BCR sequencing analysis, we then obtained the V region amino acid sequences of a novel mAb LZY3412.
Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy.
View Article and Find Full Text PDFThe 1.7 kb DRAIC long noncoding RNA inhibits tumor growth, inhibits cancer cell invasion, migration, colony formation and interacts with IKK (IκB kinase) subunits, inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB, to suppress the activation of NF-κB. Whether these activities are all linked is unclear.
View Article and Find Full Text PDFShort linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!