AI Article Synopsis

  • Recent research has focused on innate-type cytokines like IL-33, which promote type 2 immunity and are potential drug targets for asthma treatment.
  • The study shows that STAT6-immunomodulatory peptide (STAT6-IP) can inhibit IL-33's effects, leading to reduced inflammation in the lungs by lowering the activity of eosinophils and macrophages.
  • Findings indicate that STAT6-IP disrupts positive feedback loops related to IL-13 production, ultimately suppressing type 2 immunity in a mouse model of asthma.

Article Abstract

Recent interest has focused on innate-type cytokines as promoters of type 2 immunity and targets for drug development in asthma. IL-33 induces production of IL-4 and/or IL-13, which is associated with STAT6-dependent responses in innate cells, including group 2 innate lymphoid cells (ILC2s), macrophages, and eosinophils. Our published data show that STAT6-immunomodulatory peptide (STAT6-IP), an immunomodulatory peptide designed to inhibit the STAT6 transcription factor, reduces induction of Th2 adaptive immunity in respiratory syncytial virus infection and asthma models. Nevertheless, the mechanism of STAT6-IP-dependent inhibition has remained obscure. In this study, we demonstrate that STAT6-IP reduced IL-33-induced type 2 innate lung inflammation. Specifically, our data show that STAT6-IP reduced recruitment and activation of eosinophils as well as polarization of alternatively activated macrophages. Decreases in these cells correlated with reduced levels of IL-5 and IL-13 as well as several type 2 chemokines in the bronchoalveolar lavage fluid. STAT6-IP effectively inhibited expansion of ILC2s as well as the number of IL-5- and IL-13-producing ILC2s. Our data suggest that STAT6-IP effectively disrupts IL-13-dependent positive feedback loops, initiated by ILC2 activation, to suppress IL-33-induced type 2 innate immunity in the murine lung.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2100688DOI Listing

Publication Analysis

Top Keywords

type innate
12
innate immunity
8
immunity murine
8
murine lung
8
stat6-ip reduced
8
il-33-induced type
8
data stat6-ip
8
stat6-ip effectively
8
type
5
innate
5

Similar Publications

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.

View Article and Find Full Text PDF

Impairment of the intestinal barrier allows the systemic translocation of commensal bacteria, inducing a proinflammatory state in the host. Here, we investigated innate immune responses following increased gut permeability upon administration of dextran sulfate sodium (DSS) in mice. We found that Enterococcus faecalis translocated to the bone marrow following DSS treatment and induced trained immunity (TI) hallmarks in bone-marrow-derived mouse macrophages and human monocytes.

View Article and Find Full Text PDF

Unlabelled: Enteroviruses cause nearly 1 billion global infections annually and are associated with a diverse array of human illnesses. Among these, myocarditis and the resulting chronic inflammation have been recognized as major contributing factors to virus-induced heart failure. Despite our growing understanding, very limited therapeutic strategies have been developed to address the pathological consequences of virus-induced chronic innate immune activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!