Organisms can modify and increase their thermal tolerance faster and more efficiently after a brief exposure to sublethal thermal stress. This response is called 'heat hardening' as it leads to the generation of phenotypes with increased heat tolerance. The aim of this study was to investigate the impact of heat hardening on the metabolomic profile of Mytilus galloprovincialis in order to identify the associated adjustments of biochemical pathways that might benefit the mussels' thermal tolerance. Thus, mussels were exposed sequentially to two different phases (heat hardening and acclimation phases). To gain further insight into the possible mechanisms underlying the metabolic response of the heat-hardened M. galloprovincialis, metabolomics analysis was complemented by the estimation of mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK) and alternative oxidase (AOX) implicated in the metabolic pathways of gluconeogenesis, glycolysis and redox homeostasis, respectively. Heat-hardened mussels showed evidence of higher activity of the tricarboxylic acid (TCA) cycle and diversification of upregulated metabolic pathways, possibly as a mechanism to increase ATP production and extend survival under heat stress. Moreover, formate and taurine accumulation provide an antioxidant and cytoprotective role in mussels during hypoxia and thermal stress. Overall, the metabolic responses in non-heat-hardened and heat-hardened mussels underline the upper thermal limits of M. galloprovincialis, set at 26°C, and are in accordance with the OCLTT concept. The ability of heat-hardened mussels to undergo a rapid gain and slow loss of heat tolerance may be an advantageous strategy for coping with intermittent and often extreme temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.244795 | DOI Listing |
Heliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Post Code: 47148-71167, Babol, Iran.
This research explored the impact of age-hardening treatment on the mechanical response and electrical resistivity of copper-clad AA6063 alloy bimetallic wire, with a focus on microstructural analysis and interface characterization. In this study, AA6063 alloy wire was inserted into an oxygen-free high conductivity copper tube, and a bimetallic wire was fabricated through a wire drawing process that reduced the cross-sectional area in 13 stages. The bimetallic wire underwent a series of thermo-mechanical treatments, including various combinations of wire drawing, solution heat treatment, and artificial aging.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.
Due to its high mechanical properties and low quench sensitivity, 7085 aluminum alloy is suitable for the aircraft industry. However, large cross-section forgings of 7085 alloy usually have over 40% anisotropy in mechanical behaviors, especially in the vertical direction. In this study, two-stage multi-directional forgings (MDFs) with different temperature combinations, isothermal medium-temperature composite MDF (MC-MDF) and isothermal hot MDF (H-MDF), were applied to 7085 aluminum alloy ingots.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Jeju National University, 102 Daehak-Ro, Jeju-si 63243, Republic of Korea.
The microstructure of metallic materials plays a crucial role in determining their performance. In order to accurately predict the dynamic recrystallization (DRX) behavior and microstructural evolution during the hot deformation process of GCr15 bearing steel, a microstructural evolution model for the DRX process of GCr15 steel was established by combining the level set (LS) method with the Yoshie-Laasraoui-Jonas dislocation dynamics model. Firstly, hot compression tests were conducted on GCr15 steel using the Gleeble-1500D thermal simulator, and the hardening coefficient and dynamic recovery coefficient of the Yoshie-Laasraoui-Jonas model were derived from the experimental flow stress data.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal-mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100101, China.
Objective: To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.
Methods: Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!