Introduction: Inhalants are common household items that may be abused for the desired effect of euphoria. Skeletal fluorosis is an uncommon and debilitating bone disorder caused by excess fluoride deposition. We report a case of skeletal fluorosis from chronic inhalation of an electronic duster product containing 1,1-difluoroethane.
Case: A 33-year-old male with inhalant use disorder presented to the emergency department with prominent bilateral hand swelling and long bone deformities. The patient reported five years of inhaling "surf onn.© electronic duster" (1,1-Difluoroethane). Diagnostic testing demonstrated urine fluoride 64.5 mg/L (ref <3) and serum fluoride 1.8 mg/L (ref <0.13). Radiographs demonstrated diffuse periosteal new bone formation and sclerosis consistent with skeletal fluorosis.
Conclusion: Skeletal fluorosis is an uncommon complication of inhalant use disorder with products containing fluoride.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15563650.2022.2150634 | DOI Listing |
Environ Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China. Electronic address:
Background: Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Computer Science and Engineering, Anand Engineering College, Agra, India.
Groundwater contamination with fluoride is a considerable public health concern that affects millions of people worldwide. The rapid growth of urbanization has led to increase in groundwater contamination. The health risk assessment focuses on both acute and chronic health consequences as it investigates the extent and effects of fluoride exposure through contaminated groundwater.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China. Electronic address:
Fluorine is a strong oxidizing element and excessive intake can have harmful effects, particularly on the body's calcified tissues. Recent studies have demonstrated a link between miRNA and fluorosis. This study aimed to evaluate the time-dose-effect relationship of miR-200c-3p in plasma, urine and cartilage of rats with drinking water fluorosis, and to explore its potential as a biomarker.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China. Electronic address:
Excessive fluoride intake can lead to skeletal fluorosis. Nutritional differences in the same fluoride-exposed environment result in osteosclerosis, osteoporosis, and osteomalacia. DNA methylation has been found to be involved in skeletal fluorosis and is influenced by environment and nutrition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!