Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765404PMC
http://dx.doi.org/10.1039/d2nh00453dDOI Listing

Publication Analysis

Top Keywords

hypothesis electrical
8
electrical cell/material
8
cell/material interface
8
interface regulate
8
cells cscs
8
csc differentiation
8
membrane potential
8
differentiation
7
cscs
5
electrostatic polarization
4

Similar Publications

Smart delivery materials that respond to electric fields attract interest across various fields, whereas systems enabling rapid, controllable, and safe delivery capabilities remain essential. Based on the hypothesis of utilizing electric field to manipulate inter-component noncovalent bonds in delivery materials, a hydrogel system is hereby reported that is capable of achieving rapid guest release at low-voltage region. This system harnesses the synergistic regulation of electric field-induced host-guest electrostatic repulsion, alongside the dynamic modulation of H-bond interactions within the conductive hydrogel.

View Article and Find Full Text PDF

Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a strategy to facilitate fear extinction learning based on the hypothesis that taVNS increases central noradrenergic activity. Four studies out of six found taVNS to enhance extinction learning especially at the beginning of extinction. Facilitatory effects of taVNS were mainly observed in US expectancy, less in fear-potentiated startle (FPS), and not in the skin conductance response (SCR).

View Article and Find Full Text PDF

Background: Muscle quality and mass in cancer patients have prognostic and diagnostic importance.

Objectives: The objectives are to analyze agreement between gold-standard and bedside techniques for morphofunctional assessment.

Methods: This cross-sectional study included 156 consecutive colorectal cancer outpatients that underwent computed tomography (CT) scanning at lumbar level 3 (L3), whole-body bioelectrical impedance analysis (BIA), point-of-care nutritional ultrasound (US), anthropometry, and handgrip strength in the same day.

View Article and Find Full Text PDF

Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.

View Article and Find Full Text PDF

Over the past 30 years, researchers have developed X-ray-focusing telescopes by employing the principle of total reflection in thin metal films. The Wolter-I focusing mirror with variable-curvature surfaces demands high precision. However, there has been limited investigation into the removal mechanisms for variable-curvature X-ray mandrels, which are crucial for achieving the desired surface roughness and form accuracy, especially in reducing mid-spatial frequency (MSF) errors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!