Macrocycle engineering is a key topic in supramolecular chemistry. When synthesizing a ring, one can obtain either complex mixtures of macrocycles of different sizes or a single ring if a template is utilized. Here, we unite these approaches along with post-synthetic modifications to transform a single tether into multiple rings-up to five per tether. The macrocycles contain two bridged phenylpyridine ligands that are connected through a Pt atom, which defines the rings' shape, size, and host activity. All rings undergo redox reactions (between Pt and Pt ) that allow for large conformational changes. Their reactivity, together with their host performance, is a convenient way to control the capture and release of guests, to mediate ring transformations, and to control pseudorotaxane-to-pseudorotaxane conversions. This novel approach could serve to assemble other libraries of small ring molecules, create cyclic polymers bridged by responsive-at-metal nodes, and produce processable mechanically interlocked molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202216029DOI Listing

Publication Analysis

Top Keywords

tether multiple
8
capture release
8
cycling tether
4
multiple rings
4
rings pt-bridged
4
pt-bridged macrocycles
4
macrocycles differentiated
4
differentiated guest
4
guest recognition
4
recognition pseudorotaxane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!