Background: Although glass-ionomer cement (GIC) has many unique properties and advantages, it still lacks favorable mechanical properties. Cention N is a recent alkasite material with excellent mechanical properties. The purpose of this study was to compare the mechanical properties (fracture toughness [FT] and flexural strength [FS]) and acid buffer capability of an alkasite material to GIC.
Materials And Methods: In this study, a total of 60 samples were prepared using Cention N or GIC. Twenty specimens ( = 10) were prepared using beam-shaped Teflon molds for FS, and twenty specimens ( = 10) were prepared with a similar mold with a notch for FT. These were evaluated on a universal testing machine using a three-point bend test. Twenty ( = 10) disk-shaped specimens were prepared for acid buffer capability. The samples were stored in distilled water for a week. This was followed by immersion in lactic acid with a pH of 4 for calculation of the materials acid buffering capacity at 30 and 60 min from exposure using a pH meter. The data obtained were tabulated and subjected to Kolmogorov-Smirnov test and Shapiro-Wilk test to assess the normal distribution and further analyzed using the Student's -test to assess the level of significance, < 0.05 was considered statistically significant.
Results: The mean FT, FS, and acid buffer capability of Cention N were significantly higher than GIC at < 0.05.
Conclusion: The present study surmised that Cention N exhibited higher FT, FS, and acid buffer capability than GIC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680696 | PMC |
Int J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFWater Res
January 2025
Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:
Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.
View Article and Find Full Text PDFHeliyon
July 2024
Engineering Faculty, Department of Environmental and Chemical Engineering, Universidad Nacional de Colombia, Colombia.
In the present work, we report the synthesis and evaluation of a graphite-supported bismuth film working electrode (BiFE) in the simultaneous quantification of Hg(II) and Pb(II) at ppb levels. The BiFE was synthesized in-situ by electrodeposition in 1 M HNO as the supporting electrolyte at -0.5 V potential.
View Article and Find Full Text PDFIn this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!