Resonant wireless power transfer (WPT) systems have been evolving and improving their designs over the last few years, looking to efficiently charge electric vehicles, cellphones, and biomedical devices. In this article, we present to the scientific community the data obtained from the optimization of a resonant WPT prototype, operating at different vertical misalignments and load conditions, known to have an impact on the behavior of these type of systems. To maximize the power transferred to the load, we developed a proportional-integral frequency control algorithm that employs the phase-shift between the voltage and current waveforms in the transmitting antenna (resonance indicator) as a setpoint. Data on the performance and control optimization process of the prototype during laboratory tests were acquired using a LabVIEW interface, which was designed to capture information such as the evolution of the frequency, the phase-shift, and the load voltage, from multiple devices (a microcontroller, an oscilloscope, a digital multimeter, and a controllable power supply). The data were organized and presented in tables and graphs using MATLAB. The importance of the dataset relies on the opportunity to utilize the information as a basis for the improvement of the associated electronics by using different transmission topologies, higher speed components, new-generation microcontrollers, and to modelling novel intelligent control algorithms, such as adaptative neuro-fuzzy inference systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679719PMC
http://dx.doi.org/10.1016/j.dib.2022.108675DOI Listing

Publication Analysis

Top Keywords

wireless power
8
power transfer
8
frequency control
8
experimental data
4
data validating
4
validating optimization
4
optimization wireless
4
power
4
transfer prototype
4
prototype employing
4

Similar Publications

A review of effects of electromagnetic fields on ageing and ageing dependent bioeffects of electromagnetic fields.

Sci Total Environ

January 2025

Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 310030, Hangzhou, China. Electronic address:

Thanks to the progress of science and technology, human life expectancy has dramatically increased in the past few decades, but accompanied by rapid ageing of population, resulting in increased burden on society. At the same time, the living environment, especially the electromagnetic environment, has also greatly changed due to science and technology advances. The effect of artificial electromagnetic fields (EMFs) emitted from power lines, mobile phones, wireless equipment, and other devices on ageing and ageing-related diseases are receiving increasing attention.

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Free space optical communication (FSOC) technology can be used for data transmission between ocean islands as backup wireless communication networks to cope with traffic surges and emergencies. In this paper, we experimentally demonstrate the results of a 24-h real-time single-wavelength 2.5-Gbps FSOC between two islands 29 km apart at a low altitude with low complexity.

View Article and Find Full Text PDF

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!