The present dataset refers to the research article entitled "A multiscale investigation on the performance improvement of fiber-reinforced cementitious composites after exposure to high temperatures" [1]. Supplementary data on raw materials characterization, temperature recording, mass loss, water absorption, compressive strength, flexural behavior, pull-out response, fiber-matrix interface, and surface, microstructure and hardness of fibers are presented here. The continuous matrix was produced from cementitious grout containing Portland cement, sand, silica fume, superplasticizer, and water. The heating was carried out in an electric oven up to 260 °C. The bending tests was performed for fiber-reinforced cementitious composite (FRCC) with steel fiber contents of 1%, 3%, and 5% by volume, and for non-fibrous matrix. The pull-out test was performed using single fiber embedded in the matrix. The water absorption and axial compression tests was performed for non-fibrous matrix. The fiber-matrix analysis was performed from polished sections of fibers embedded in cementitious matrix. The fiber analysis was performed from steel fibers. The data refer to the residual properties after heating and slow cooling or to the reference condition without heating. The data can help in understanding residual performance of FRCC after exposure to high temperatures and may be useful for developing resilient building materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679743 | PMC |
http://dx.doi.org/10.1016/j.dib.2022.108745 | DOI Listing |
Materials (Basel)
December 2024
Department of Civil Engineering, University of Burgos, 09001 Burgos, Spain.
The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that is almost exclusively composed of GFRP composite fibers that can be revalued in terms of their use as a raw material in concrete production. In this research, the fresh and mechanical performance of concrete made with 1.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
China Construction Seventh Engineering Division Corp., Ltd., Zhengzhou 450002, China.
Concrete with good mechanical properties and durability has always been a necessity in engineering. The addition of fibers and supplementary cementitious materials to concrete can enhance its mechanical and durability performance through a series of chemical and physical interactions. This study aims to investigate the effects of key parameters on the compressive strength, splitting tensile strength, and chloride penetration resistance of concrete combined with ground granulate blast furnace slag (GGBS) and macro polypropylene synthetic fiber (MSF).
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Faculty of Civil Engineering and Architecture, Kunming University of Science and Technology, Kunming 650599, China.
When steel fiber and PVA fiber produced in China and PVA fiber made in Japan are prepared according to the appropriate proportions, the mechanical properties of hybrid fiber-reinforced cementitious composites (HFRCC) are better, which is beneficial to cost control and has wide application prospects. The effects of the volume content of steel fibers and the volume substitution rate of PVA fibers on the tensile strength, compressive strength, and flexural strength of HFRCC were analyzed using the factor optimization method and principal component analysis (PCA). Through the principal component analysis of HFRCC, a mathematical model for comprehensive performance evaluation was established, and a multi-objective optimization was carried out.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
School of Civil and Architectural Engineering, Liaoning University of Technology, Jinzhou 121000, China.
The application of carbon fiber in cement matrix has some disadvantages, such as poor dispersion and poor interfacial adhesion. In order to improve the interaction between carbon fiber and cement matrix and improve the properties of cement-based composites, carbon fiber was modified by electrophoretic deposition of nano-graphene oxide (GO). In this paper, the effects of doping CF into the cement matrix before and after GO modification are studied comparatively in terms of electrical conductivity, electrothermal warming effect, and pressure-sensitive properties of the cement matrix.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2024
Department of Civil Engineering, Geotechnical Division, Recep Tayyip Erdogan University, Fener, Rize, TR53100, Turkey.
Industrial solid waste (mine tailings) management has emerged as the key universal ecological challenge as a result of the unceasing creation of rising waste by-products. Employing tailings makes mine fill production economical and assists resolve disposal problems. Foamed cement-based tailings backfill (FCTB) is a mine fill consisting of tailing, cement, water, and foaming agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!