Ocean acidification (OA) threatens the persistence of reef-building corals and the habitat they provide. While species-specific effects of OA on marine organisms could have cascading effects on ecological interactions like competition, few studies have identified how benthic reef competitors respond to OA. We explored how two common Caribbean competitors, branching and a colonial zoanthid (), respond to the factorial combination of OA and competition. In the laboratory, we exposed corals, zoanthids and interacting corals and zoanthids to ambient (8.01 ± 0.03) and OA (7.68 ± 0.07) conditions for 60 days. The OA treatment had no measured effect on zoanthids or coral calcification but decreased maximum PSII efficiency. Conversely, the competitive interaction significantly decreased calcification but had minimal-to-no countereffects on the zoanthid. Although this interaction was not exacerbated by the 60-day OA exposure, environmental changes that enhance zoanthid performance could add to the dominance of zoanthids over corals. The lack of effects of OA on coral calcification indicates that near-term competitive interactions may have more immediate consequences for some corals than future global change scenarios. Disparate consequences of competition have implications for community structure and should be accounted for when evaluating local coral reef trajectories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682307PMC
http://dx.doi.org/10.1098/rsos.220760DOI Listing

Publication Analysis

Top Keywords

coral calcification
12
ocean acidification
8
corals zoanthids
8
corals
5
negative effects
4
zoanthid
4
effects zoanthid
4
zoanthid competitor
4
competitor limit
4
coral
4

Similar Publications

Increasing microplastic concentrations have nonlinear impacts on the physiology of reef-building corals.

Sci Total Environ

January 2025

Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.

The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.

View Article and Find Full Text PDF

Genome sequence of the Mediterranean red coral Corallium rubrum.

BMC Res Notes

December 2024

Research Unit on the Biology of Precious Corals CSM-CHANEL, 8 Quai Antoine 1er, Monaco, Principality of Monaco.

Objectives: Corallium rubrum, the precious red coral, is an octocoral endemic to the western Mediterranean Sea. Like most octocorals, it produces tiny, calcified structures called sclerites. Uniquely, it also produces a completely calcified axial skeleton that is a bright red color.

View Article and Find Full Text PDF

Adverse effects of total phosphate load from the environment on the skeletal formation of coral juveniles.

Mar Pollut Bull

December 2024

School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan.

Nitrogen's impact on corals has been widely studied, but the role of phosphate is often overlooked due to its low concentrations in seawater. Previous studies have suggested that phosphate can penetrate intercellular spaces to reach the extracellular calcifying medium (ECM), where it adsorbs onto skeletal surfaces and disrupts calcium carbonate crystallization, thereby inhibiting skeletal growth. Based on this mechanism, we hypothesized that skeletal growth inhibition depends not only on phosphate concentration but also on total phosphate load (flow volume × concentration).

View Article and Find Full Text PDF

This study aims to elucidate a novel mechanism for elevating the pH within the calicoblastic extracellular calcifying medium (pH) of corals and demonstrate the potential contribution of calcifying organisms to CO sequestration. Departing from traditional models that attribute the increase in pH primarily to H expulsion via Ca-ATPase, we emphasize the significant role of polyamines. These ubiquitous biogenic amines conveyed by calicoblastic cells through polyamine transporters demonstrate a remarkable affinity for CO.

View Article and Find Full Text PDF

Corals residing in habitats that experience high-frequency seawater pCO variability may possess an enhanced capacity to cope with ocean acidification, yet we lack a clear understanding of the molecular toolkit enabling acclimatisation to environmental extremes or how life-long exposure to pCO variability influences biomineralisation. Here, we examined the gene expression responses and micro-skeletal characteristics of Pocillopora damicornis originating from the reef flat and reef slope of Heron Island, southern Great Barrier Reef. The reef flat and reef slope had similar mean seawater pCO, but the reef flat experienced twice the mean daily pCO amplitude (range of 797 v.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!