Superhydrophobic surfaces can be derived from roughening hydrophobic materials. However, the superhydrophobic surfaces with various micro/nano morphologies present variations of chemical and mechanical durability, which limits their practical applications. Very little actually is known about comparing durability and corrosion resistance of concave and convex superhydrophobic surface structures systematically. In this paper, two kinds of superhydrophobic AlNiTi amorphous coatings with concave and convex surfaces were obtained by chemical etching and hydrothermal methods, respectively. Benefiting from nanoscale sheet structure, the convex superhydrophobic coating displays higher water-repellence (contact angle = 157.6°), better self-cleaning performance and corrosion resistance. The corrosion current density of the convex superhydrophobic surface is approximately one order of magnitude smaller than the concave superhydrophobic surface. Besides, the long-term chemical stability and mechanical durability of both superhydrophobic surfaces were also investigated. The formation and damage mechanisms of these two kinds of superhydrophobic surfaces were proposed. It is hoped that these investigations could provide clear guidance for the real-world applications of superhydrophobic amorphous coatings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670684 | PMC |
http://dx.doi.org/10.1039/d2ra06073f | DOI Listing |
Mater Horiz
January 2025
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.
The complex synthetic approach and utilization of toxic chemicals restrain the commercialization of numerous existing superhydrophobic materials. This article focuses on the development of a halogen-free superhydrophobic material for self-cleaning applications. HMDS-modified MCM-41 is employed as the base material.
View Article and Find Full Text PDFACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.
View Article and Find Full Text PDFSmall Methods
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.
The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!