Microtubules are self-assembling biological nanotubes made of the protein tubulin that are essential for cell motility, cell architecture, cell division, and intracellular trafficking. They demonstrate unique mechanical properties of high resilience and stiffness due to their quasi-crystalline helical structure. It has been theorized that this hollow molecular nanostructure may function like a quantum wire where optical transitions can take place, and photoinduced changes in microtubule architecture may be mediated via changes in disulfide or peptide bonds or stimulated by photoexcitation of tryptophan, tyrosine, or phenylalanine groups, resulting in subtle protein structural changes owing to alterations in aromatic flexibility. Here, we measured the Raman spectra of a microtubule and its constituent protein tubulin both in dry powdered form and in aqueous solution to determine if molecular bond vibrations show potential Fano resonances, which are indicative of quantum coupling between discrete phonon vibrational states and continuous excitonic many-body spectra. The key findings of this work are that we observed the Raman spectra of tubulin and microtubules and found line shapes characteristic of Fano resonances attributed to aromatic amino acids and disulfide bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680776 | PMC |
http://dx.doi.org/10.1016/j.bpr.2021.100043 | DOI Listing |
Langmuir
January 2025
Surface Science Laboratory, Graduate School of Engineering, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya, Aichi 468-8511, Japan.
Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.
View Article and Find Full Text PDFAnalyst
January 2025
Physical to Life Sciences Research Hub, Technological University Dublin, City Campus, Aungier Street, Dublin 2, D02 HW71, Ireland.
Carotenoids are known for their antioxidant and vision protection roles, with dietary supplements often promoted for eye health. An initial trial, the European Nutrition in Glaucoma Management (ENIGMA), assessed macular pigment optical density (MPOD) and other ocular parameters before and after supplementing glaucoma patients with macular pigment (MP) carotenoids. The trial confirmed significant improvements in clinical ocular health.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 12116, Prague 2 Czech Republic
Heterostructuring of two-dimensional materials offers a robust platform to precisely tune optoelectronic properties through interlayer interactions. Here we achieved a strong interlayer coupling in a double-layered heterostructure of sulfur isotope-modified adjacent MoS monolayers two-step chemical vapor deposition growth. The strong interlayer coupling in the MoS(S)/MoS(S) was affirmed by low-frequency shear and breathing modes in the Raman spectra.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India.
Hydroxyapatite (HAP) is a well-known medically renowned bioactive material known for its excellent biocompatibility and mechanical stability, but it lacks fast bioactivity. The restricted release of ions from hydroxyapatite encourages the search for a faster bioactive material that could replicate other properties of HAP. A new sol-gel-mediated potentially bioactive glass material that could mimic the structure of HAP but can surpass the performance of HAP bioactively has been formulated in this study.
View Article and Find Full Text PDFNanotoxicology
January 2025
Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia.
In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!