Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microorganisms naturally present at environmental contaminated sites are capable of biodegrading, biotransforming, or removing contaminants in soil and groundwater through bioremediation processes. Cleanup strategies and goals for site remediation can be effectively achieved by bioremediation leveraging the capabilities of microorganisms to biotransform contaminants into lesser or non-toxic end products; however, reproducible success can be limited by inadequate design or performance monitoring. A group of biological analyses collectively termed molecular biological tools (MBTs) can be used to assess the contaminant-degrading capabilities and activities of microorganisms present in the environment and appropriately implement bioremediation approaches. While successful bioremediation has been demonstrated through previously described lab-scale studies and field-scale implementation for a variety of environmental contaminants, design and performance monitoring of bioremediation has often been limited to inferring biodegradation potential, occurrence, and pathways based on site geochemistry or lab-scale studies. Potential field-scale application of MBTs presents the opportunity to more precisely design and monitor site-specific bioremediation approaches. To promote standardization and successful implementation of bioremediation, a framework for field-scale application of MBTs within a multiple lines of evidence (MLOE) approach is presented. The framework consists of three stages: (i) "Assessment" to evaluate naturally occurring biogeochemical conditions and screen for potential applicability of bioremediation, (ii) "Design" to define a site-specific bioremediation approach and inform amendment selection, and (iii) "Performance Monitoring" to generate data to measure or infer bioremediation progress following implementation. This framework is introduced to synthesize the complexities of environmental microbiology and guide field-scale application of MBTs to assess bioremediation potential and inform site decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679620 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.958742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!