Eukaryotic cells are constantly subject to DNA damage, often with detrimental consequences for the health of the organism. Cells mitigate this DNA damage through a variety of repair pathways involving a diverse and large number of different proteins. To better understand the cellular response to DNA damage, one needs accurate measurements of the accumulation, retention, and dissipation timescales of these repair proteins. Here, we describe an automated implementation of the "quantitation of fluorescence accumulation after DNA damage" method that greatly enhances the analysis and quantitation of the widely used technique known as laser microirradiation, which is used to study the recruitment of DNA repair proteins to sites of DNA damage. This open-source implementation ("qFADD.py") is available as a stand-alone software package that can be run on laptops or computer clusters. Our implementation includes corrections for nuclear drift, an automated grid search for the model of a best fit, and the ability to model both horizontal striping and speckle experiments. To improve statistical rigor, the grid-search algorithm also includes automated simulation of replicates. As a practical example, we present and discuss the recruitment dynamics of the early responder PARP1 to DNA damage sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683346PMC
http://dx.doi.org/10.1017/s2633903x22000083DOI Listing

Publication Analysis

Top Keywords

dna damage
24
dna
8
accumulation dna
8
damage sites
8
repair proteins
8
damage
6
automated
4
automated modeling
4
modeling protein
4
protein accumulation
4

Similar Publications

Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).

Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.

View Article and Find Full Text PDF

Optimized protocol for single-cell isolation and alkaline comet assay to detect DNA damage in cells of Drosophila wing imaginal discs.

STAR Protoc

January 2025

Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy; Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA. Electronic address:

Reduced expression of nucleolar genes induces stress and DNA damage. Here, we present a protocol to analyze DNA fragmentation at the single-cell level in Drosophila imaginal discs using an optimized alkaline comet assay. We describe steps for larvae development, tissue disaggregation, and single-cell dissociation.

View Article and Find Full Text PDF

Neutral lipids restrict the mobility of broken DNA molecules during comet assays.

Biol Cell

January 2025

Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.

One widespread technique to assess in relative terms the amount of broken DNA present in the genome of individual cells consists of immobilizing the cell's nucleus under an agarose pad (called the nucleoid) and subjecting the whole genome to electrophoresis to force broken DNA molecules out of it. Since the migrating broken DNA molecules create a tail behind the nucleoid, this technique is named the comet assay. While performing comet assays regularly, we systematically observed circular regions devoid of DNA within the nucleoid region.

View Article and Find Full Text PDF

WFDC3 sensitizes colorectal cancer to chemotherapy by regulating ATM/ATR kinase signaling pathway.

FASEB J

January 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China.

Chemoresistance is an ongoing challenge for colorectal cancer (CRC) that significantly compromises the anti-tumor efficacy of current drugs. Identifying effective targets or drugs for overcoming chemoresistance is urgently needed. Our previous study showed that WFDC3 served as a tumor suppressor that hindered CRC metastasis.

View Article and Find Full Text PDF

The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis.

Acta Parasitol

January 2025

División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México.

Leishmania spp. cause a wide range of human diseases, localized skin lesions, mucocutaneous and visceral infections. In the present study, the aim was to investigate the potential role of sanguinarine as a specific inhibitor of Leishmania PP2C that can induce apoptosis in the parasite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!