Background: Intestinal microbiota is the primary target for the multifunctional nature of berberine. Berberine can reverse the structure and composition of gut microbiota under pathological conditions. This study aimed to investigate the effects of berberine on uric acid (UA) metabolism and gut microbiota in a hyperuricemia rat model established using potassium oxonate.

Methods: Sprague-Dawley (SD) male rats were divided into a normal control group (n= 10), a hyperuricemia group (n = 12) and a berberine-treated group (n = 11). The UA level in serum, urine and fecal, blood xanthine oxidase (XOD), and urate transports ABCG2 and Galectin-9 in the liver and colon, were evaluated using ELISA kits. The alterations in gut microbiota were investigated using 16S rRNA sequencing.

Results: The UA level in the hyperuricemia group was significantly elevated (p<0.001), suggesting that the model was successfully established. After treatment with berberine, levels of blood and fecal UA significantly decreased (p<0.001), but not uric UA. The blood XOD level decreased, urate transport ABCG2 in the colon increased, and urate transport Galectin-9 in the colon decreased after berberine treatment (p<0.05). Further 16S sequencing revealed that berberine affected the gut microbiota composition and diversity in hyperuricemia rats. Berberine treatment reduced the relative abundance of Bacteroidetes, and increased the relative abundance of Lactobacillus. The gut microbiota were predicted to be involved in multiple metabolic pathways, such as sphingolipid metabolism, starch and sucrose metabolism and N-glycans.

Conclusion: Berberine might be a possible therapeutic candidate in hyperuricemia, which could regulate UA metabolism by affecting XOD, and urate transports and partly by regulating gut microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207326666221124093228DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
uric acid
8
hyperuricemia group
8
berberine
4
berberine regulates
4
regulates metabolism
4
metabolism uric
4
acid modulates
4
modulates intestinal
4
intestinal flora
4

Similar Publications

Revealing NOD1-Activating Gram-Positive Gut Microbiota via in Vivo Labeling with a meso-Diaminopimelic Acid Probe.

ACS Chem Biol

January 2025

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.

View Article and Find Full Text PDF

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.

View Article and Find Full Text PDF

Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis.

J Agric Food Chem

January 2025

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.

View Article and Find Full Text PDF

How does gut microbiota affect the vaginitis axis? The mediating role of plasma metabolites.

Microbiol Spectr

December 2024

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Vaginitis is the most common problem afflicting women of childbearing age. However, the underlying etiological factors remain poorly understood, leading to recurrent vaginitis and constraining clinical management. Here, we explored whether the gut microbiota influences the risk of vaginitis by performing a two-sample Mendelian randomization analysis using the largest genome-wide association studies to date.

View Article and Find Full Text PDF

A novel robust network construction and analysis workflow for mining infant microbiota relationships.

mSystems

December 2024

Laboratory of Microbiology, Immunology, and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China.

Unlabelled: The gut microbiota plays a crucial role in infant health, with its development during the first 1,000 days influencing health outcomes. Understanding the relationships within the microbiota is essential to linking its maturation process to these outcomes. Several network-based methods have been developed to analyze the developing patterns of infant microbiota, but evaluating the reliability and effectiveness of these approaches remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!