Background: The sterile insect technique (SIT) is emerging as a tool to supplement traditional pesticide-based control of Aedes aegypti, a prominent mosquito vector of microbes that has increased the global burden of human morbidity and mortality over the past 50 years. SIT relies on rearing, sterilizing and releasing large numbers of male mosquitoes that will mate with fertile wild females, thus reducing production of offspring from the target population. In this study, we investigated the effects of ionizing radiation (gamma) on male and female survival, longevity, mating behavior, and sterility of Ae. aegypti in a dose-response design. This work is a first step towards developing an operational SIT field suppression program against Ae. aegypti in St. Augustine, Florida, USA.

Results: Exposing late-stage pupae to 50 Gy of radiation yielded 99% male sterility while maintaining similar survival of pupae to adult emergence, adult longevity and male mating competitiveness compared to unirradiated males. Females were completely sterilized at 30 Gy, and when females were dosed with 50 Gy, they had a lower incidence of blood-feeding than unirradiated females.

Conclusion: Our work suggests that an ionizing radiation dose of 50 Gy should be used for future development of operational SIT in our program area because at this dose males are 99% sterile while maintaining mating competitiveness against unirradiated males. Furthermore, females that might be accidentally released with sterile males as a result of errors in sex sorting also are sterile and less likely to blood-feed than unirradiated females at our 50 Gy dose. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7303DOI Listing

Publication Analysis

Top Keywords

sterile insect
8
insect technique
8
technique sit
8
aedes aegypti
8
ionizing radiation
8
operational sit
8
mating competitiveness
8
unirradiated males
8
males females
8
sterile
5

Similar Publications

Biocontrol techniques that impair reproductive capacity of insect pests provide opportunities to control the dynamics of their populations while minimizing collateral damage to non-target species and the environment. The Trojan Female Technique, or TFT, is a method of the trans-generational fertility-based population control through the release of females that carry mitochondrial DNA mutations that negatively affect male, but not female, reproductive output. TFT is based on the evolutionary hypothesis that, due to maternal inheritance of mitochondria, mutations which are beneficial or neutral in females but harmful in males can accumulate in the mitochondrial genome without selection acting against them.

View Article and Find Full Text PDF

Tsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies.

View Article and Find Full Text PDF

A case of polyploid utility in biocontrol: reproductively-impaired triploid Nasonia vitripennis have high host-killing ability.

Pest Manag Sci

December 2024

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.

Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.

View Article and Find Full Text PDF

A stage structured model for mosquito suppression with immigration.

Math Biosci Eng

November 2024

School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China.

The incompatible insect technique based on is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by -infected males.

View Article and Find Full Text PDF

Amyloid Fibrils of the s36 Protein Modulate the Morphogenesis of Eggshell.

Int J Mol Sci

November 2024

St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia.

is the oldest classic model object in developmental genetics. It may seem that various structures of the fruit fly at all developmental stages have been well studied and described. However, recently we have shown that some specialized structures of the eggshell contain an amyloid fibril network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!