A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prognostic models for COVID-19 needed updating to warrant transportability over time and space. | LitMetric

Background: Supporting decisions for patients who present to the emergency department (ED) with COVID-19 requires accurate prognostication. We aimed to evaluate prognostic models for predicting outcomes in hospitalized patients with COVID-19, in different locations and across time.

Methods: We included patients who presented to the ED with suspected COVID-19 and were admitted to 12 hospitals in the New York City (NYC) area and 4 large Dutch hospitals. We used second-wave patients who presented between September and December 2020 (2137 and 3252 in NYC and the Netherlands, respectively) to evaluate models that were developed on first-wave patients who presented between March and August 2020 (12,163 and 5831). We evaluated two prognostic models for in-hospital death: The Northwell COVID-19 Survival (NOCOS) model was developed on NYC data and the COVID Outcome Prediction in the Emergency Department (COPE) model was developed on Dutch data. These models were validated on subsequent second-wave data at the same site (temporal validation) and at the other site (geographic validation). We assessed model performance by the Area Under the receiver operating characteristic Curve (AUC), by the E-statistic, and by net benefit.

Results: Twenty-eight-day mortality was considerably higher in the NYC first-wave data (21.0%), compared to the second-wave (10.1%) and the Dutch data (first wave 10.8%; second wave 10.0%). COPE discriminated well at temporal validation (AUC 0.82), with excellent calibration (E-statistic 0.8%). At geographic validation, discrimination was satisfactory (AUC 0.78), but with moderate over-prediction of mortality risk, particularly in higher-risk patients (E-statistic 2.9%). While discrimination was adequate when NOCOS was tested on second-wave NYC data (AUC 0.77), NOCOS systematically overestimated the mortality risk (E-statistic 5.1%). Discrimination in the Dutch data was good (AUC 0.81), but with over-prediction of risk, particularly in lower-risk patients (E-statistic 4.0%). Recalibration of COPE and NOCOS led to limited net benefit improvement in Dutch data, but to substantial net benefit improvement in NYC data.

Conclusions: NOCOS performed moderately worse than COPE, probably reflecting unique aspects of the early pandemic in NYC. Frequent updating of prognostic models is likely to be required for transportability over time and space during a dynamic pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686462PMC
http://dx.doi.org/10.1186/s12916-022-02651-3DOI Listing

Publication Analysis

Top Keywords

prognostic models
16
dutch data
16
patients presented
12
transportability time
8
time space
8
emergency department
8
model developed
8
data
8
nyc data
8
temporal validation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!