A precise, sensitive eco-friendly, simple, rapid, and derivative spectrofluorimetric method was developed to quantify edoxaban tosylate monohydrate in pure form and pharmaceutical dosage form. Sudden death due to pulmonary embolism as a consequence of coronavirus infection (covid-19) is an emerging problem. As a result, the world health organization introduced new guidelines to treat patients with COVID-19 with oral anticoagulants. Edoxaban tosylate monohydrate is an oral anticoagulant that doesn't require hospitalization after dose adjustment. This spectrofluorimetric method relies on the derivatization by 9-fluorenyl methyl chloroformate at room temperature in borate buffer pH 9.0. After excitation at 265 nm, the product is highly fluorescent at 309 nm. Many experimental factors influencing the reaction's stability and development were thoroughly investigated and optimized. The method validation was evaluated by using ICH guidelines and showed high precision and accuracy with an average percent recovery of 101.46% ± 1.02. The linear range was 5.0-50.0 ng/mL with a correlation coefficient of 0.9999, the LOD was 1.5 ng/mL, and the LOQ was 4.5 ng/mL. The green assessment of the method was achieved utilizing the eco-scale and the Green Analytical Procedure Index. There was no significant difference between the results of the suggested method and those of the reported method according to Statistical analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685855PMC
http://dx.doi.org/10.1186/s13065-022-00890-2DOI Listing

Publication Analysis

Top Keywords

spectrofluorimetric method
12
method
8
oral anticoagulant
8
derivatization 9-fluorenyl
8
9-fluorenyl methyl
8
methyl chloroformate
8
green assessment
8
assessment method
8
edoxaban tosylate
8
tosylate monohydrate
8

Similar Publications

Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).

View Article and Find Full Text PDF

An efficient probe (E)-2-(benzo[d]thiazol-2-yl)-3-(9-ethyl-9 H-carbazol-3-yl)acrylonitrile (CZ-BTZ) for selective fluorescence "turn-on" response with cyanide (CN) ion sensor was developed by simple Knoevenagel condensation of 9-ethyl-9 H carbazole-3-carbaldehyde with 2-(benzo[d]thiazol-2-yl) acetonitrile. The sensing ability of probe CZ-BTZ was tested with different inorganic anions through spectrophotometric and spectrofluorimetric methods. The UV-vis and fluorescence spectral studies show the formation of a new adduct between CZ-BTZ and CN by appearing with a new absorbance band at 350 nm and "turn-on" fluorescence at 535 nm in CHCN: HO (8:2, v/v, pH 7.

View Article and Find Full Text PDF

This study introduces a novel synchronous spectrofluorimetry coupled with chemometric tools for the determination of tenofovir and dolutegravir antiretroviral drugs. Utilizing partial least squares regression (PLS) fine-tuned by genetic algorithm as variable selection tool, the developed models demonstrate greater sensitivity, cost-effectiveness, and reduced environmental impact compared to traditional HPLC methods. The model's validation was further confirmed using external validation in addition to QC samples as per ICH M10 guidelines, which yielded high accuracy ranged between 94.

View Article and Find Full Text PDF

In this study, a sensitive and selective spectrofluorimetric method was developed for the determination of the antidiabetic drug nateglinide based on its reaction with the xanthene dye acid red 87 (AR87). A fluorescence quenching process was observed for the AR87 at 545 nm upon the addition of nateglinide, which was exploited for the quantitative analysis. The reaction mechanism was investigated using quantum mechanical calculations suggesting a transfer between the electron-rich AR87 and the electron-deficient nateglinide.

View Article and Find Full Text PDF

Ketamine is a dissociative anesthetic drug that is abused by teenagers and young adults, commonly for recreational purposes in dance clubs, to generate euphoria and dissociation, and sometimes employed as a date-rape drug. Herein, a highly sensitive, and environmentally friendly spectrofluorimetric method was developed for detection of ketamine in pharmaceutical and plasma samples. The technique is based on a nucleophilic substitution reaction occurring between ketamine and NBD-Cl (4-chloro-7-nitrobenzo-2-oxa-1,3-diazole), resulting in the formation of a fluorescent derivative that exhibits detectability at a remarkable level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!