Accurate genome-wide phasing from IBD data.

BMC Bioinformatics

Ancestry DNA, San Francisco, USA.

Published: November 2022

As genotype databases increase in size, so too do the number of detectable segments of identity by descent (IBD): segments of the genome where two individuals share an identical copy of one of their two parental haplotypes, due to shared ancestry. We show that given a large enough genotype database, these segments of IBD collectively overlap entire chromosomes, including instances of IBD that span multiple chromosomes, and can be used to accurately separate the alleles inherited from each parent across the entire genome. The resulting phase is not an improvement over state-of-the-art local phasing methods, but provides accurate long-range phasing that indicates which of two haplotypes in different regions of the genome, including different chromosomes, was inherited from the same parent. We are able to separate the DNA inherited from each parent completely, across the entire genome, with 98% median accuracy in a test set of 30,000 individuals. We estimate the IBD data requirements for accurate genome-wide phasing, and we propose a method for estimating confidence in the resulting phase. We show that our methods do not require the genotypes of close family, and that they are robust to genotype errors and missing data. In fact, our method can impute missing data accurately and correct genotype errors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686111PMC
http://dx.doi.org/10.1186/s12859-022-05066-2DOI Listing

Publication Analysis

Top Keywords

inherited parent
12
accurate genome-wide
8
genome-wide phasing
8
ibd data
8
entire genome
8
genotype errors
8
missing data
8
ibd
5
phasing
4
phasing ibd
4

Similar Publications

Copy Number Variant Does Not Influence Stroke Severity in 2 C57BL/6J Mouse Models nor in Humans: An Exploratory Study.

Stroke

January 2025

Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (M.F., S.B., S.M., K.W., M.E., A.M., U.D., C.S.).

Background: Contrary to the common belief, the most commonly used laboratory C57BL/6J mouse inbred strain presents a distinctive genetic and phenotypic variability, and for several traits, the genotype-phenotype link remains still unknown. Recently, we characterized the most important stroke survival factor such as brain collateral plasticity in 2 brain ischemia C57BL/6J mouse models (bilateral common carotid artery stenosis and middle cerebral artery occlusion) and observed a Mendelian-like fashion of inheritance of the posterior communicating artery (PcomA) patency. Interestingly, a copy number variant (CNV) spanning locus was reported to segregate in an analogous Mendelian-like pattern in the C57BL/6J colonies of the Jackson Laboratory.

View Article and Find Full Text PDF

Long-term exposure to fine particulate matter components with obesity in children and adolescents in China: The age-sex disparities and key effect modifiers.

Ecotoxicol Environ Saf

January 2025

Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China. Electronic address:

Long-term fine particulate matter (PM) exposure was associated with childhood obesity. However, the key PM components and whether PM effect may vary by obesity type, growth stage, sex, and individual/family characteristics have yet been examined. In this study, we investigated 213,907 Chinese children and adolescents aged 3-18 years in 2017-2019.

View Article and Find Full Text PDF

Interspecific hybridization between relative species (with a diploid genome designated as TT), (EE) and (NN) and the successive polyploidization with transitions from sexuality to asexuality experienced by triploid hybrids likely influence their chromosomal rearrangements, including rearrangements of ribosomal DNA (rDNA) distribution patterns. Previously, we documented distinct karyotypic differences: exhibited bi-armed chromosomes while showed uni-armed chromosomes with rDNA-positive hybridization signals, respectively. In this study, fluorescence in situ hybridization (FISH) with rDNA and rDNA probes was used to analyze and compare chromosomal distribution patterns of rDNAs in clonally reproduced triploid hybrids of different genomic constitutions ETT, ETN, EEN and EET (referred to using acronyms denoting the haploid genomes of their parent species), and their parental species.

View Article and Find Full Text PDF

Microsatellite markers are widely used in aquaculture for genetic analysis and breeding programs, but challenges such as segregation distortion and allelic instability can impact their effectiveness in parentage verification and inheritance studies. This study evaluated 15 microsatellite loci in seven experimental olive flounder () families bred through 1:1 full-sibling crosses, assessing their utility for accurate parentage and inheritance stability. Parentage assignments were conducted within an expanded pool of 647 candidate parents (including the actual 14 parents), encompassing both closely related and moderately distant individuals.

View Article and Find Full Text PDF

Genetic Nurture Effects on Type 2 Diabetes Among Chinese Han Adults: A Family-Based Design.

Biomedicines

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.

: Genes and environments were transmitted across generations. Parents' genetics influence the environments of their offspring; these two modes of inheritance can produce a genetic nurture effect, also known as indirect genetic effects. Such indirect effects may partly account for estimated genetic variance in T2D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!