The Omicron transmission has infected nearly 600,000 people in Shanghai from March 26 to May 31, 2022. Combined with different control measures taken by the government in different periods, a dynamic model was constructed to investigate the impact of medical resources, shelter hospitals and aerosol transmission generated by clustered nucleic acid testing on the spread of Omicron. The parameters of the model were estimated by least square method and MCMC method, and the accuracy of the model was verified by the cumulative number of asymptomatic infected persons and confirmed cases in Shanghai from March 26 to May 31, 2022. The result of numerical simulation demonstrated that the aerosol transmission figured prominently in the transmission of Omicron in Shanghai from March 28 to April 30. Without aerosol transmission, the number of asymptomatic subjects and symptomatic cases would be reduced to 130,000 and 11,730 by May 31, respectively. Without the expansion of shelter hospitals in the second phase, the final size of asymptomatic subjects and symptomatic cases might reach 23.2 million and 4.88 million by May 31, respectively. Our results also revealed that expanded vaccination played a vital role in controlling the spread of Omicron. However, even if the vaccination rate were 100%, the transmission of Omicron should not be completely blocked. Therefore, other control measures should be taken to curb the spread of Omicron, such as widespread antiviral therapies, enhanced testing and strict tracking quarantine measures. This perspective could be utilized as a reference for the transmission and prevention of Omicron in other large cities with a population of 10 million like Shanghai.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684770 | PMC |
http://dx.doi.org/10.1186/s12879-022-07876-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!