On adjustable and lossless suppression to disturbances and uncertainties for nonminimum-phase laser pointing system.

ISA Trans

Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China; Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

Published: May 2023

This paper focuses on the nonminimum-phase laser pointing system's disturbances and uncertainties rejection problems on moving platforms. Moving platforms cause a variety of noticeable vibrations that substantially impair pointing accuracy. Additionally, the disturbance-observer-based control approaches currently in use sacrifice the desired disturbance suppression effects, stability margins, or tracking characteristics due to the nonminimum-phase laser pointing system. This paper suggests an adjustable disturbance-observer-based control strategy with dual filters to obtain lossless and adjustable disturbance suppression effects without sacrificing stability margins or tracking characteristics. The closed-loop controller and forward plant are presented to reduce the laser pointing system's nonminimum-phase properties. An additional flexible filter is added to deal with the weakened nonminimum-phase system. Both filters are uniformly proposed depending on various disturbances brought on by moving platforms and work together to accomplish lossless desired disturbance suppression effects. The analyses and experiments show that the suggested approach can accomplish the lossless and adjustable disturbance suppression effects in the nonminimum-phase laser pointing system, which cancels out many more disturbances and uncertainties than the current methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2022.11.004DOI Listing

Publication Analysis

Top Keywords

laser pointing
20
nonminimum-phase laser
16
disturbance suppression
16
suppression effects
16
disturbances uncertainties
12
pointing system
12
moving platforms
12
system paper
8
pointing system's
8
disturbance-observer-based control
8

Similar Publications

The utilization of zinc oxide nanoparticles is thought to augment wound healing because of their antibacterial characteristics and capacity to stimulate cellular regeneration, especially in instances of minor burn injuries. On the other hand, it has been shown that tissue regeneration is aided by low-power laser therapy via photobiomodulation. Zinc oxide nanoparticles and low-power laser therapy are the two therapeutic modalities that will be compared in this study in order to assess how well they promote healing after burn injury and provide important new information on improved wound care techniques.

View Article and Find Full Text PDF

Yes-associated protein (YAP), a focal point of current biological research, is involved in regulating various life processes. In this report, live-cell fluorescence resonance energy transfer (FRET) imaging was employed to unravel the YAP complexes in MCF-7 cells. Fluorescence imaging of living cells co-expressing CFP (cyan fluorescent protein)-YAP and YFP (yellow fluorescent protein)-LATS1 (large tumor suppressor 1) plasmids revealed that YAP promoted LATS1 oligomerization around mitochondria.

View Article and Find Full Text PDF

Background: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.

View Article and Find Full Text PDF

A parallel Hilbert transform arctangent phase demodulation (PHT-ATAN) method based on overlapping computation is proposed for phase demodulation of laser heterodyne Doppler vibrometers. The method suppresses the end point effects by utilizing overlapping computation and data concatenation and accelerates phase demodulation through parallel processing. Simulation and experimental results demonstrate that when the algorithm's parallelism is ≥4, the computation speed of this method increases by over 100% compared to traditional methods, while maintaining the signal-to-noise ratio and accuracy of the phase demodulation results.

View Article and Find Full Text PDF

Ppb-Level Photoacoustic Detection of Chloroform Using Four-Microphone Array.

Anal Chem

January 2025

International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!