Matrix-bound nanovesicles (MBV) are a distinct subtype of extracellular vesicles that are firmly embedded within biomaterials composed of extracellular matrix (ECM). MBV both store and transport a diverse, tissue specific portfolio of signaling molecules including proteins, miRNAs, and bioactive lipids. MBV function as a key mediator in ECM-mediated control of the local tissue microenvironment. One of the most important mechanisms by which MBV in ECM bioscaffolds support constructive tissue remodeling following injury is immunomodulation and, specifically, the promotion of an anti-inflammatory, pro-remodeling immune cell activation state. Recent in vivo studies have shown that isolated MBV have therapeutic efficacy in rodent models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV administered independent of the rest of the ECM, the in vitro and in vivo safety and biodistribution profile of MBV remain uncharacterized. The purpose of the present study was to thoroughly characterize the pre-clinical safety profile of MBV through a combination of in vitro cytotoxicity and MBV uptake studies and in vivo toxicity, immunotoxicity, and imaging studies. The results showed that MBV isolated from porcine urinary bladder are well-tolerated and are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive compared to the potent immunosuppressive drug cyclophosphamide. Furthermore, this safety profile was sustained across a wide range of MBV doses. STATEMENT OF SIGNIFICANCE: Matrix-bound nanovesicles (MBV) are a distinct subtype of bioactive extracellular vesicles that are embedded within biomaterials composed of extracellular matrix (ECM). Recent studies have shown therapeutic efficacy of MBV in models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV, the in vitro and in vivo biocompatibility and biodistribution profile of MBV remain uncharacterized. The results of the present study showed that MBV are a well-tolerated ECM-derived therapy that are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive. Collectively, these data highlight the translational feasibility of MBV therapeutics across a wide variety of clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.11.026 | DOI Listing |
Viruses
December 2024
Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
Cytomegalovirus (CMV) infection in solid organ transplant (SOT) and hematopoietic cell transplant (HCT) recipients may increase the risk of rejection or allograft dysfunction, other infection(s), and morbidity and mortality. Treatment can be challenging due to medication-associated toxicities. Maribavir (MBV) is a promising option for the treatment of resistant or refractory (R/R) CMV infection in lieu of foscarnet (FOS), which has long been the recommended therapy for (val)ganciclovir-resistant infection.
View Article and Find Full Text PDFClin Radiol
December 2024
Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan.
Aim: To investigate the relationship between each CTP parameter and that between CTP parameters and patient characteristics in patients without obstructive coronary artery disease (CAD).
Materials And Methods: Seventy-seven (28 female; 65.0±10.
Acta Derm Venereol
December 2024
L'Oréal Research and Innovation, Clichy, France.
Acta Derm Venereol
December 2024
L'Oréal Research and Innovation, Clichy, France.
Int J Cardiol
December 2024
Department of Surgery, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Electronic address:
Aims: Remodeling of the extracellular matrix (ECM) is critical for effective wound healing and maintaining organ homeostasis. The ECM of soft tissues, including cardiac, contains embedded nanovesicles; or matrix-bound nanovesicles (MBV). The luminal cargo of MBV consists of lipids, microRNAs (miRNAs), and proteins that influence the function of immune and stromal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!