Global energy concerns urged us to search for sufficient utilization of biomass to renewable energy. Herein, rattan biomass displaying herbaceous species-like anatomy and hardwood-like chemical composition was used as model of lignocellulose to determine its recalcitrance inhibiting efficient bioconversion. Delignification and continuous mild alkaline treatments were applied for deconstruction of rattan cane (Calamus simplicifolius) followed by cellulase enzymatic hydrolysis. Cellulose supramolecular structural variations were proved to be the major reason for the enhanced hydrolysis in addition to the removal of lignin and hemicelluloses matrix. Lowered crystallinity (50-65 %) as well as swelled crystallite sizes (4.8-5.0 nm) during allomorphic transformation favored the enhanced hydrolysis, rather than the crystalline cellulose II. Moreover, well-distributed separation and fibrillation of cellulose elementary fibrils also contributed to glucose yield promotion. The study will provide new insights to the strategy to efficient bioconversion of lignocellulosic biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128381DOI Listing

Publication Analysis

Top Keywords

rattan biomass
8
supramolecular structural
8
structural variations
8
efficient bioconversion
8
enhanced hydrolysis
8
insights key
4
key factors
4
factors bioconversion
4
bioconversion efficiency
4
efficiency rattan
4

Similar Publications

Plants play a key role in the ecological restoration of urban wetlands. Previous studies have shown that heavy-metal accumulation capacities and adaptation strategies of wetland plants may be related to their life forms. In this study, pot experiments were conducted to investigate the effects of nitrogen (N) on the adaptation strategies of two evergreen and deciduous aquatic iris life forms under cadmium (Cd) stress.

View Article and Find Full Text PDF

Multiscale cellulose-based optical management films with tunable transparency and haze fabricated by different bamboo components and mechanical defibrillation approaches.

Carbohydr Polym

January 2025

International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China. Electronic address:

Article Synopsis
  • Renewable cellulose from bamboo and parenchyma cells is being used to create biomass-based optical films that can be adjusted for transparency and haze levels.
  • Different separation and processing methods like ultrasonication, blending, and microfluidization were employed to produce these films with varying properties.
  • The study highlights a sustainable approach to developing films that balance transparency, haze, and strength, indicating potential applications in anti-glare technology.
View Article and Find Full Text PDF

Sustainable passive radiation cooling transparent film for mobile phone protective screens.

J Colloid Interface Sci

February 2025

MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, School of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Passive daytime radiative cooling (PDRC) is a promising approach to address energy, environmental, and safety issues caused by global warming, with high emissivity in a transparent atmospheric window and high reflectivity in the solar spectrum. However, most demonstrations of PDRC rely mainly on complex and expensive spectral selective nanophotonic structures, requiring specialized photonic structures that are both expensive and difficult to obtain. The superiorities of low-cost, abundant resources, renewability, and high value-added biomass resources prompt Gleditsia sinensis polysaccharides (GSP) to be used in thermal emission materials to explore further the characteristics of regulating object temperature within a specific range without any external energy consumption.

View Article and Find Full Text PDF

Design and development of a multifunctional wound dressing with self-healing, adhesive, and antibacterial properties to attain optimal wound closure efficiency are highly desirable in clinical applications. Nevertheless, conventional hydrogels face significant barriers in their mechanical strength, adhesive performance, and antibacterial properties. Herein, a tough hydrogel based on aldehyde-grafted galactomannan was synthesized through radical copolymerization and Schiff base reaction, incorporating hyaluronic acid, acrylamide, and the zwitterionic monomer to create a multi-crosslinked structure.

View Article and Find Full Text PDF

Biodegradable and renewable biomass aerogel has attracted significant attention because of its excellent characteristics. However, most aerogels were limited by poor mechanical strength and complex fabrication process. Herein, two delignified Tetrapanax papyriferus (TP) lignocellulosic samples (TP-SC, TP-FA/HAC) served as renewable porous skeletons with polyvinyl alcohol (PVA) modification to prepare high performance aerogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!