Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors.

Cell

Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Gladstone Institutes, University of California, San Francisco, CA, USA. Electronic address:

Published: November 2022

AI Article Synopsis

  • CRISPR-Cas systems are mechanisms in microbes that protect against viral infections using adaptive RNA guidance, and researchers discovered these systems also exist in various bacteriophages.
  • Bacteriophage-encoded CRISPR systems include all six known types but some are missing key components, indicating they might serve different functions or rely on hosts for support.
  • The study introduces new Cas9-like proteins and the Casλ family, which has a unique structure for recognizing DNA and has shown potential for genome editing in plants and animals, emphasizing the importance of phage-derived CRISPR-Cas enzymes.

Article Abstract

CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2022.10.020DOI Listing

Publication Analysis

Top Keywords

crispr-cas systems
12
genome editors
8
crispr systems
8
systems
6
crispr-cas
5
diverse virus-encoded
4
virus-encoded crispr-cas
4
systems include
4
include streamlined
4
streamlined genome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!