Purpose: This study determined whether adults who stutter (AWS) exhibit deficits in responding to an auditory feedback timing perturbation, and whether external timing cues, which increase fluency, attenuate any disruptions due to altered temporal auditory feedback.
Methods: Fifteen AWS and sixteen adults who do not stutter (ANS) read aloud a multisyllabic sentence either with normal pacing or with each syllable paced at the rate of a metronome. On random trials, an auditory feedback timing perturbation was applied, and timing responses were compared between groups and pacing conditions.
Results: Both groups responded to the timing perturbation by delaying subsequent syllable boundaries, and there were no significant differences between groups in either pacing condition. Furthermore, no response differences were found between normally paced and metronome-paced conditions.
Conclusion: These findings are interpreted as showing that 1) AWS respond normally to pure timing perturbations, and 2) metronome-paced speech has no effect on online speech timing control as assessed in the present experiment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974758 | PMC |
http://dx.doi.org/10.1016/j.jfludis.2022.105943 | DOI Listing |
Bioengineering (Basel)
January 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
: Falls and fall consequences in older adults are global health issues. Previous studies have compared postural sways or stepping strategies between older adults with and without fall histories to identify factors associated with falls. However, more in-depth neuromuscular/kinematic mechanisms have remained unclear.
View Article and Find Full Text PDFMol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea.
Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.
View Article and Find Full Text PDFbioRxiv
December 2024
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Song acquisition behavior observed in the songbird system provides a notable example of learning through trial- and-error which parallels human speech acquisition. Studying songbird vocal learning can offer insights into mechanisms underlying human language. We present a computational model of song learning that integrates reinforcement learning (RL) and Hebbian learning and agrees with known songbird circuitry.
View Article and Find Full Text PDFElife
January 2025
Cell Biology, Hospital for Sick Children, Toronto, Canada.
Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!