Background And Objective: The Chinese medical question answer matching (cMedQAM) task is the essential branch of the medical question answering system. Its goal is to accurately choose the correct response from a pool of candidate answers. The relatively effective methods are deep neural network-based and attention-based to obtain rich question-and-answer representations. However, those methods overlook the crucial characteristics of Chinese characters: glyphs and pinyin. Furthermore, they lose the local semantic information of the phrase by generating attention information using only relevant medical keywords. To address this challenge, we propose the multi-scale context-aware interaction approach based on multi-granularity embedding (MAGE) in this paper.
Methods: We adapted ChineseBERT, which integrates Chinese characters glyphs and pinyin information into the language model and fine-tunes the medical corpus. It solves the common phenomenon of homonyms in Chinese. Moreover, we proposed a context-aware interactive module to correctly align question and answer sequences and infer semantic relationships. Finally, we utilized the multi-view fusion method to combine local semantic features and attention representation.
Results: We conducted validation experiments on the three publicly available datasets, namely cMedQA V1.0, cMedQA V2.0, and cEpilepsyQA. The proposed multi-scale context-aware interaction approach based on the multi-granularity embedding method is validated by top-1 accuracy. On cMedQA V1.0, cMedQA V2.0, and cEpilepsyQA, the top-1 accuracy on the test dataset was improved by 74.1%, 82.7%, and 60.9%, respectively. Experimental results on the three datasets demonstrate that our MAGE achieves superior performance over state-of-the-art methods for the Chinese medical question answer matching tasks.
Conclusions: The experiment results indicate that the proposed model can improve the accuracy of the Chinese medical question answer matching task. Therefore, it may be considered a potential intelligent assistant tool for the future Chinese medical answer question system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2022.107249 | DOI Listing |
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
March 2021
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!