New variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high effective reproduction numbers are continuously being selected by natural selection. To establish effective control measures for new variants, it is crucial to know their transmissibility and replacement trajectory in advance. In this paper, we conduct retrospective prediction tests for the variant replacement from Alpha to Delta in England, using the relative reproduction numbers of Delta with respect to Alpha estimated from partial observations. We found that once Delta's relative frequency reached 0.15, the date when the relative frequency of Delta would reach 0.90 was predicted with maximum absolute prediction errors of three days. This means that the time course of the variant replacement could be accurately predicted from early observations. Together with the estimated relative reproduction number of a new variant with respect to old variants, the predicted replacement timing will be crucial information for planning control strategies against the new variant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697243 | PMC |
http://dx.doi.org/10.3390/v14112556 | DOI Listing |
Biol Sex Differ
January 2025
Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada.
As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model.
View Article and Find Full Text PDFBMJ Open Qual
January 2025
Professor Department of Obstetrics and Gynaecology, Lady Hardinge Medical College, New Delhi, India.
Background: Allowing a birth companion is the basic right of a mother and is identified as an important component of respectful maternity care. The implementation of this intervention has been a challenge in heavy-load public health facilities in India.
Local Problem: Despite the proven benefits of the presence of birth companions on maternal-fetal outcomes, there was no policy of allowing birth companions in our hospital.
Genetics
January 2025
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
Haldane's Dilemma refers to the concern that the need for many "selective deaths" to complete a substitution (i.e. selective sweep) creates a speed limit to adaptation.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Biochemistry and Molecular Biology, Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of Russia, 634050 Tomsk, Russia.
Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.
Methods: The study involved 45 women with a mean age of 35 ± 4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!